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Abstract

This thesis is concerned with the numerical simulation of transition-edge
sensors, a novel type of cryogenic energy sensor that will be installed on
board the future X-ray observatory Athena.

Stochastic differential equations are used to accurately model the noise
in these detectors. A stochastic Runge-Kutta integrator is implemented in
the simulation software of the observatory. The computer simulations of
the observatory will provide valuable feedback to science studies and the
detector design during the development of Athena.

The simulation results of this thesis resemble previous simulations of the
sensors. However, these new results are now based on a sound mathematical
foundation instead of the heuristic noise simulation that was implemented
in the simulation software before.

i





Contents

1 Introduction 1

2 The Athena X-Ray Observatory 3

3 Simulation of X-Ray Telescopes 7

4 Transition-Edge Sensors 11
4.1 Basic Microcalorimeter Theory . . . . . . . . . . . . . . . . . . . . . . 11
4.2 TES Based Microcalorimeters . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Noise Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Stochastic Differential Equations 17
5.1 Measure Theory and Integrals . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 The Wiener Process and White Noise . . . . . . . . . . . . . . . . . . . 26
5.4 The Itô Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Itô’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . 41
5.7 The Stratonovich Integral . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Numerical Methods for Stochastic Differential Equations 45
6.1 Stochastic Taylor Expansions . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 The Euler-Maruyama Method . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 Higher Order Numerical Methods . . . . . . . . . . . . . . . . . . . . . 51
6.4 Approximation of Multiple Stochastic Integrals . . . . . . . . . . . . . 53
6.5 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Simulation of Transition-Edge Sensors 61
7.1 Noise Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4 Bartlett’s Method and PSD Estimates . . . . . . . . . . . . . . . . . . 70
7.5 Event reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Conclusion and Outlook 73

References 75

Glossary of Notation 77

iii





Chapter 1

Introduction

Most physical and engineering systems are too complex to provide analytical solu-
tions. In order to study their behavior, numerical simulations are required. Numeri-
cal simulations are calculations performed by a computer program that implements a
mathematical model for the physical system.

In this thesis I perform numerical simulations of transition-edge sensors, a novel
type of cryogenic energy sensor. Such transition-edge sensors will be installed on board
the Advanced Telescope for High ENergy Astrophysics (Athena). Athena is a future
X-ray observatory of the European Space Agency that is currently under development
with a launch foreseen in 2028 (Barcons et al., 2017). The performance of Athena will
greatly exceed that offered by current X-ray observatories like Chandra and XMM-
Newton. Athena will make an important contribution to answering some of the most
pressing questions of todays astrophysics. Because X-ray radiation is absorbed by the
Earth’s atmosphere, the Athena observatory must be launched into space. Form there
Athena will scan the universe for X-ray emission from supermassive black holes and
other celestial objects.

On board Athena will be two detecting instruments. One of them, the X-ray Integral
Field Unit, is made up of a large array of about 4000 transition-edge sensor (TES) based
microcalorimeters. In order to study the performance of Athena in various science cases
and to provide feedback to the detector development, simulations of this highly complex
observatory are run with the Simulation of X-ray TElescopes (SIXTE) software package
(Wilms et al., 2014). The software tool that performs detailed simulations of the TES
based microcalorimeters within the SIXTE framework is named tessim. Since the
performance of real detectors is greatly affected by various noise processes, tessim
also simulates this detector noise. However, the method currently implemented to
simulate the noise is merely heuristic and mathematically not rigorous.

The accurate description of noise in physical systems can be taken into account
by stochastic differential equations. The main objective of this thesis is to model the
noise in transition-edge sensor based microcalorimeters in the framework of stochastic
differential equations and to implement a stochastic integrator into the tessim software
tool that can solve such differential equations numerically.

In the following two chapters I present the Athena mission and the SIXTE software
in more detail. Then I explain the working principle of transition-edge sensor based
microcalorimeters in Chapter 4. Chapter 5 provides a detailed introduction to the
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2 CHAPTER 1. INTRODUCTION

theory of stochastic differential equations. Starting with some basic definitions and
concepts of stochastic calculus I gradually introduce the construction of stochastic
integrals and stochastic differential equations. Next, I show methods to solve such
stochastic differential equations numerically in Chapter 6 and present the algorithm
that I implemented in the tessim software tool. In Chapter 7 I show the results of my
simulations and investigate to what extent my new results differ from the simulations
done before with tessim.



Chapter 2

The Athena X-Ray Observatory

The Advanced Telescope for High-Energy Astrophysics (Athena) is a future X-ray
observatory to be launched in 2028. It is the second large class mission within the
European Space Agency Cosmic Vision 2015–2035 programme and will address the
Hot and Energetic Universe science theme (Barcons et al., 2017). A conceptual design
of the Athena observatory is shown in Fig. 2.1.

Thanks to its novel optics technology and state-of-the-art detecting instruments,
Athena will allow unprecedented studies of a wide range of astronomical phenomena.
There are two major questions that will be studied within the Athena science theme
(Barcons et al., 2015). First, how and why does ordinary matter assemble into the large-
scale structures like galaxies and galaxy clusters that we see today in the Universe?
Second, how do black holes grow and influence their surroundings?

In order to answer the first question Athena will map hot gas structures in the
Universe and determine their physical properties. It is assumed that most of the
ordinary matter, called baryons, in todays Universe is locked up in hot gas clouds
at temperatures of more than a million Kelvin. Observations of this hot gas requires

Fig. 2.1: Conceptional design of the Athena X-ray observatory. Taken from www.the-athena-
x-ray-observatory.eu/mission.
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4 CHAPTER 2. THE ATHENA X-RAY OBSERVATORY

Fig. 2.2: Left: The manufacturing process of an SPO mirror module. The starting point is
an Si plate with a width of about 60 mm. Parallel grooves with a rectangular profile are cut
into the plate. Multiple plates are then stacked to create an SPO module. This way, hundreds
of pores are created where each individual pore acts as a small sector of a Wolter I telescope.
Right: The individual SPO modules are arranged in 19 rings to create the complete mirror.
Figures taken from Willingale et al. (2013).

sensitive X-ray satellites. Theory and cosmological simulations predict that most of the
baryons reside in filamentary structures that trace dark matter, called the warm-hot
intergalactic medium (WHIM) (Kaastra et al., 2013). However, observational evidence
of the WHIM is still lacking. One aim of the Athena mission is to reveal the WHIM and
to relate its evolution and physical properties to the cosmological large-scale structure
formation. Understanding of this connection is essential in order to have a complete
picture of the Universe.

In order to answer the second question Athena will search for supermassive black
holes. Most, if not all, galaxies harbor a black hole at their center which plays a
fundamental role in their formation and evolution. Understanding the influence of
black holes on the large-scale structure formation is another major goal of the Athena
mission. To address this goal, Athena will find the most distant and therefore earliest
supermassive black holes and trace their growth.

Besides these two major science goals, the Athena mission is expected to offer vital
information on a wide range of other astrophysical research objects such as stellar
winds, young stellar objects (Sciortino et al., 2013) and supernova remnants (De-
courchelle et al., 2013). To meet the above science goals, Athena needs to provide
a large field of view and high spectral resolution.

The Athena observatory will utilize an X-ray telescope about 3 m in diameter with
a focal length of 12 m that is based on the novel silicon pore optics (SPO) technology
(Collon et al., 2015). Simply put, the mirror is made up of multiple SPO modules.
Each SPO module consists of a set of Si plates which are stacked together through
small ribs. The individual SPO modules are then arranged in multiple rings to create
the mirror. The manufacturing process of an SPO module is illustrated in Fig. 2.2.
The silicon pore optics will provide a large collection area and good angular resolution
while still being very lightweight.

In its focal plane Athena will carry two interchangeable detecting instruments: The
Wide Field Imager (WFI) and the X-ray Integral Field Unit (X-IFU). The WFI is
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Fig. 2.3: Concept drawing of the WFI. The two detectors are installed in the center on
the camera head. In front of the camera head lies the filter wheel which controls the arriving
photon flux from the Athena mirror. The signal from the detector is transferred to the detector
electronics which is mounted on top of the camera head. Excess heat from the detectors is
removed through heat pipes. A baffle in front of the filter wheel reduces unwanted stray light.
Taken from Meidinger et al. (2017).

a silicon based detector that uses DEPFET Active Pixel Sensor technology and will
provide good spectral resolution over a broad energy band from 0.2 to 15 keV and a
large field of view (Meidinger et al., 2017). A separate chip will allow faster readout
that is appropriate for very bright sources.

The X-IFU is a cryogenic X-ray spectrometer that is made up of a large array of
microcalorimeters based on superconducting transition-edge sensors (TES) operated
at temperatures below 100 mK (Barret et al., 2016). Microcalorimeters are thermal
detectors that measure the small temperature rise induced by the energy deposition
of incident X-ray photons in the detector. By measuring this temperature rise, the
photon energies can be reconstructed. The X-IFU will provide spatially resolved high-
resolution X-ray spectroscopy over a small field of view with an energy resolution of
2.5 eV below 7 keV. Concept drawings of the two detectors are shown in Fig. 2.3 and
Fig. 2.4.

An important part of the development of Athena will be computer simulations
of the observatory (Wilms et al., 2016). By running detailed simulations of the full
observatory one can estimate the performance of the detectors and make sure that the
target science goals can be reached before building the hardware.

In the next chapter I present the Simulation of X-ray Telescopes software package.
This software is used for the simulations of the Athena observatory.
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Fig. 2.4: Design concept of the X-IFU focal plane assembly (FPA). At the core of the FPA
lies the TES microcalorimeter array, consisting of 3840 pixels. Frequency domain multiplexing
based on superconducting quantum interference devices (SQUIDs) is used for the readout of
the TES (see Barret et al., 2016, for details). The FPA includes magnetic and stray light
shielding. Taken from Jackson et al. (2016).



Chapter 3

Simulation of X-Ray Telescopes

Initially developed by Schmid (2012), the SImulation of X-ray TElescopes (SIXTE) is
a software package for the simulation of observations with X-ray telescopes based on
Monte Carlo methods. Since then, the software is under continuous development, with
contributions from many different people and institutes. In this chapter I will briefly
summarize the working principle of the simulator. A full description of the simulator
is given by Schmid (2012). All software developed for the simulator is available for
download at the simulator homepage1. Detailed instructions on its usage are given in
the simulator manual2.

The simulator performs end-to-end simulations, i.e., simulations of the full detec-
tion chain of an X-ray observatory. The aim of the simulator is to resemble the real
observatory as closely as possible at comparably fast computation times. Starting with
a description of the astrophysical source as the input, SIXTE generates a list of photons
which are then propagated through the imaging and detection process. The output of
a SIXTE simulation is an event list that closely resembles the output data from real
telescopes. Figure 3.1 illustrates the data flow in a typical SIXTE simulation.

The simulation of future X-ray missions is a crucial step in their development pro-
cess. By running simulations of the proposed observatory one can gauge its performance
and make sure that the target science goals can be met before entering the construc-
tion phase. The simulations also provide important feedback to the instrument design.
For example, it would be very costly and time consuming to build and test different
detector designs experimentally. By running simulations of the proposed detectors one
can easily change and test different pixel designs, array configurations, and other pa-
rameters in order to optimize the detector performance. For this reasons, the SIXTE
software is currently used to study the performance of the instruments on board Athena
(Wilms et al., 2014).

The SIXTE software is written in the C programming language and data are stored
in Flexible Image Transport System (FITS) files. Most simulators for X-ray telescopes
are mission specific. A big advantage of the SIXTE simulator is its flexible and modular
setup. Each step of the simulation is processed by an individual simulation tool. Differ-
ent telescope and instrument configurations can be implemented easily by exchanging
the corresponding modules.

1http://www.sternwarte.uni-erlangen.de/research/sixte/
2http://www.sternwarte.uni-erlangen.de/research/sixte/data/simulator_manual.pdf
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8 CHAPTER 3. SIMULATION OF X-RAY TELESCOPES

Fig. 3.1: This flow diagram shows the three major steps performed by SIXTE during the
simulation process. The input of SIXTE is a description of the X-ray source to be simulated.
Using this source description a list of photons is created which are then propagated through
the optics. The output of the imaging process is an impact list which contains the arrival
times, energies and impact positions of the photons on the detector. The last step models the
detection process where the incident photons are converted into detector signals. The output
of a SIXTE simulation is an event list that contains information about all detected photons
in a similar way to data from real telescopes. Graphic taken from Wilms et al. (2014).

The work of my thesis contributes to the simulation of the Athena X-IFU detector.
There are currently two simulation tools implemented in the SIXTE software for the
X-IFU detector. One is the xifupipeline that is based on a simple detector model
and enables fast simulations by using response matrices. A simulation of an observation
by using the xifupipeline is shown in Fig. 3.2.

The other tool is tessim (Wilms et al., 2016) which is based on a much more
detailed detector model and accurately simulates the physics of the transition-edge
sensor based microcalorimeters that the X-IFU is made up of. This approach takes
more computation time than the xifupipeline, but provides more realistic results
and is thus much better suited for engineering studies.

The tessim tool is part of the third step in the SIXTE simulation chain and gets a
photon impact list as its input. Put simply, tessim then computes a numerical solution
of the differential equations that describe the response of a TES based microcalorimeter
to the absorption of an X-ray photon. The output of tessim is a FITS file that contains
the signal of the detector at each read out time. A full description of the tool is given
by Wilms et al. (2016).

In order to provide realistic simulations of the detector, tessim also includes noise
from the electronics and internal thermal fluctuations in its detector model. Currently,
tessim uses a standard fourth order Runge-Kutta integrator to solve the system of
differential equations numerically. The noise in the detector is simulated by adding ap-
propriately scaled random numbers to the differential equations before each integration
step.

This heuristic approach yields very reasonable simulation results, but is mathe-
matically not rigorous. The correct mathematical framework to treat such differential
equations affected by noise are stochastic differential equations (SDE). The numeri-
cal analysis of stochastic differential equations differs significantly from that of ordi-
nary differential equations. The goal of my thesis is to model the detector noise in
the framework of SDEs and implement an appropriate stochastic integrator into the
tessim software to solve the resulting system of SDEs numerically.

Since the simulation results will provide feedback to the instrument design and
science studies, it is an important task to make sure this part of the simulation is done
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Fig. 3.2: Simulation of a 100 ks X-IFU observation of the galaxy cluster Abell 2146 by
using the xifupipeline. The simulation result was processed with tools available in SIXTE.
Spectra extracted from the two indicated regions are shown beside the image and illus-
trate the high resolution of the detector. Graphic taken from the SIXTE simulator manual
(http://www.sternwarte.uni-erlangen.de/research/sixte/data/simulator_manual.pdf).

correctly. The tessim tool has already been used to study the detector performance in
the past. So another question I want to answer with my thesis is if this new approach
would make much of a difference to the previous simulation results. Perhaps the results
of the two methods are indeed similar which would be the desired outcome.

Before proceeding to stochastic calculus and numerical methods for SDEs I will first
describe the working principal of a TES based microcalorimeter in the next chapter and
derive the system of differential equations that describe the detector response without
noise.
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Chapter 4

Transition-Edge Sensors

This chapter provides an introduction to the working principle of transition-edge sensor
(TES) based microcalorimeters. The following information is obtained from Irwin &
Hilton (2005) and McCammon (2005) unless otherwise stated.

Microcalorimeters are thermal detectors that can be used to measure the energy
of photons. When a photon hits the detector its energy is converted into heat. By
measuring the resulting temperature rise the energy of the photon can be determined.

Transition-edge sensors are superconducting thin films that can be used as very
sensitive thermometers in microcalorimeters when kept within the superconducting to
normal transition. Such TES based microcalorimeters can be adjusted to measure
photon energies from the near infrared through gamma rays.

In the following sections I will explain the physics of a simple microcalorimeter and
the transition edge-sensor and derive the system of differential equations that describe
the response of the detector to the absorption of a photon. Finally, I present the
fundamental noise processes that exist in such devices.

4.1 Basic Microcalorimeter Theory

A schematic view of a microcalorimeter is shown in Fig. 4.1. A simple microcalorimeter
consists of an absorber with heat capacity C, a thermometer coupled to the absorber
and a weak thermal link with thermal conductance Gbath to a cold bath at tempera-
ture Tb.

When a photon with an energy Eph hits the absorber, its energy is converted into
heat which raises the temperature of the absorber. Ideally, the energy is deposited in-
stantaneously and the temperature of the absorber rises by ∆T = Eph/C. By measur-
ing this temperature increase with the thermometer the energy of the incident photon
can be determined as long as the capacity C of the absorber is known. The device then
cools back to the steady state temperature through the weak thermal link. Figure 4.2
illustrates the thermal response of the device to the absorption of a photon.

The behavior of this system can be described by the power balance equation (Dreyer,
2012)

C
dT (t)

dt
= Pin − Pb(T, Tb), T (0) = T0, (4.1)

where T is the temperature of the absorber at time t, T0 is the initial temperature of

11
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Thermometer

Cold bath Tb

Gbath

Absorber

Weak Thermal Link

Eph

C

Fig. 4.1: Schematic illustration of a simple microcalorimeter (after Dreyer, 2012). A simple
microcalorimeter consists of an absorber, a thermometer and a weak thermal link to a cold
bath. When a photon hits the absorber its energy is thermalized. By measuring the temper-
ature increase with a thermometer the energy of the photon can be determined. The excess
heat from the absorption event is then removed through the weak thermal link to the cold
bath.

the device, Pin is the signal power and Pb(T, Tb) is the heat flow from the absorber to
the cold bath.

4.2 TES Based Microcalorimeters
In a TES based microcalorimeter a superconducting thin film connected to the absorber
is used as the thermometer. Superconductors are materials that have zero resistance
when cooled below a characteristic transition temperature Tc and normal resistance
RN > 0 for temperatures above Tc. An illustration of the resistance versus temperature
curve for a TES is shown in Fig. 4.2. The critical temperature of a TES is typically of
the order 0.1 K.

The superconducting film is voltage biased so that the resultant Joule heating raises
the temperature of the TES to a temperature in the phase transition between the
superconducting and normal state. Fig. 4.3 shows the circuit used to bias a TES and
the Thevenin-equivalent circuit we will use for our analysis.

The increase of the detector temperature caused by the absorption of a photon
leads to an increase of the TES resistance. This in turn leads to a reduction of the
bias current. This change in current is measured using a superconducting quantum
interference device (SQUID) that is inductively coupled to an input coil in series with
the TES.

The electrical equation describing the system follows from Kirchhoff’s voltage law,
i.e., the sum of all voltages in a closed circuit is zero (Horowitz & Hill, 2015), and is
given by (Irwin & Hilton, 2005)

L
dI(t)

dt
= V − IRL − IRTES(T, I), I(0) = I0, (4.2)

where I is the electrical current through the TES, L is the inductance, V is the
Thevenin-equivalent bias voltage and R(T, I) is the electrical resistance of the TES,
which is normally a function of the temperature and current.
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Fig. 4.2: Left: The time evolution of the temperature of the absorber measured with
the thermometer. Initially, the microcalorimeter is at thermal equilibrium. When a photon
with energy Eph is absorbed, the temperature of the absorber increases by ∆T = Eph/C
and then cools back to the steady state temperature. Right: Illustration of the resistance
versus temperature curve for a TES. When the TES is operated within the superconducting
to normal transition, a small change in temperature leads to a large change in resistance.
Within this range of temperatures the TES can be used as a very sensitive thermometer.

In the small signal limit the resistance of the TES can be expanded to first order
as

RTES(T, I) ≈ R0 +
∂R

∂T

∣∣∣∣
(T0,I0)

(T − T0) +
∂R

∂I

∣∣∣∣
(T0,I0)

(I − I0), (4.3)

where R0 is the steady-state resistance. We can replace the partial derivatives by defin-
ing two dimensionless parameters that describe the steepness of the superconducting
transition. These parameters are the temperature sensitivity

α ≡ T0

R0

∂R

∂T

∣∣∣∣
(T0,I0)

(4.4)

and the current sensitivity

β ≡ I0

R0

∂R

∂I

∣∣∣∣
(T0,I0)

. (4.5)

Vbias

Rbias

RS

Rpar

RTES

L SQUID
V

RL

RTES

L

Fig. 4.3: Left: The electric circuit used to bias the TES (after Kinnunen, 2011). Rbias is
the bias resistor, RS is the shunt resistor and Rpar is an additional parasitic resistance that
can exist in the circuit. An input coil in series with the TES that is inductively coupled to
a SQUID is typically used to read out the signals from the detector. Right: The Thevenin-
equivalent of the circuit, where RL = RS +Rpar and V = VbiasRS/Rbias.
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With Eqs. (4.4) and (4.5), Eq. (4.3) becomes

RTES(T, I) ≈ R0 + α
R0

T0

(T − T0) + β
R0

I0

(I − I0). (4.6)

The voltage applied across the TES produces a Joule heating PJ given by

PJ(t) = RTES(T (t), I(t))I(t)2. (4.7)

The voltage biasing setup has an additional advantage concerning the detector oper-
ation. When the temperature of the TES increases, its resistance increases. For a
constant bias voltage V this causes a drop in TES current and thus a decrease of Joule
heating. The temperature of the TES cools down until it is in equilibrium again with
the heat loss through the weak thermal link. This restoring action is called negative
electrothermal feedback (ETF) and keeps the TES stably self-regulated within the nar-
row transition region. Besides stability, the negative ETF also speeds up the recovery
back to steady state which increases the possible count rates of the detector.

The heat flow Pbath depends on the difference in temperature between the absorber
and the cold bath. We assume a power-law dependence which can be modeled as (Irwin
& Hilton, 2005)

Pb(T, Tb) =
Gbath

nT n−1
(T n − T nb ), (4.8)

where Gbath is the conductance of the weak thermal link to the cold bath and n is
the thermal conductance exponent, a dimensionless constant which depends on the
dominant mechanism of heat transport, the geometry of the link, and material.

Adding the additional Joule heating resulting from the voltage biasing to the ther-
mal equation (4.1) yields

C
dT (t)

dt
= −Pb(T, Tb) +RTES(T, I)I2 + Pin, T (0) = T0 (4.9)

Equations (4.9) and (4.2) form a system of two coupled differential equations that
describe the response of a TES based microcalorimeter. However, like all physical
systems with dissipation, the performance of real detectors is affected and limited
by various noise processes. To investigate and simulate the effect of noise on the
performance of the detector we need to include these noise processes in our detector
model. In the next section I explain the main sources of noise that exist in a TES
based microcalorimeter.

4.3 Noise Contributions
In an ideal simple detector model as described above there are three main sources
of noise (Goldie et al., 2009): Johnson noise generated in the TES and bias resistor,
thermal fluctuation noise (TFN) from the connection to the cold bath and noise in the
readout circuit.

The TFN is caused by random exchange of energy across the weak thermal link
between the TES and the cold bath (Dreyer, 2012). These fluctuations in energy lead
to fluctuations of the TES temperature.
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Johnson noise results from random thermal motions of the electrons in a resistor
(Horowitz & Hill, 2015). Since the motion of electrons constitutes a current, these
random motions create fluctuations in voltage across the resistor.

In order to get a realistic simulation of the detector we want to include these noise
terms in our analysis. This allows us to provide meaningful data and feedback for
studies regarding the capabilities and optimization of the detector. Adding the noise
terms to the equations that describe the response of a TES results in a system of
so-called stochastic differential equations

C
dT (t)

dt
= −Pb(T, Tb) +R(T, I)I2 + Pin + "noise", (4.10)

L
dI(t)

dt
= V − IRL − IRTES(T, I) + "noise", (4.11)

with initial conditions T (0) = T0 and I(0) = I0. Stochastic differential equations (SDE)
are a generalization of ordinary differential equations for stochastic processes. With
SDEs it is possible to accurately model systems that are not only deterministic but
that are also subject to stochastic forces like our detector model. The following chapter
provides an introduction to the theory of SDEs. In Chapter 6 I present methods to
solve such equations numerically.
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Chapter 5

Stochastic Differential Equations

Stochastic differential equations occur when a system described by differential equa-
tions is influenced by random noise. In the most general sense stochastic differential
equations are differential equations where one or more of the terms is a stochastic
process. This results in a solution which is itself a stochastic process.

As an example consider the population growth model (Mao, 2007)

dN(t)

dt
= a(t)N(t), N(0) = N0, (5.1)

where N(t) is the size of a population at time t, a(t) is the relative rate of growth and
N0 ≥ 0 is the initial size of the population. The rate of growth a(t) might be influenced
by some random environmental effects, e.g.,

a(t) = r(t) + σ(t)”noise”, (5.2)

so Eq. (5.1) becomes

dN(t)

dt
= r(t)N(t) + σ(t)N(t)”noise”, N(0) = N0. (5.3)

We can also write Eq. (5.3) as an integral equation, i.e.,

N(t) = N0 +

∫ t

0

r(s)N(s)ds+

∫ t

0

σ(s)N(s)”noise”ds. (5.4)

This equation is an example of a stochastic differential equation. The first integral is an
ordinary Riemann integral whereas the second integral is called a stochastic integral or
Itô integral. The integral is named after the Japanese mathematician Itô Kiyoshi who
laid the foundations for the theory of stochastic integration and stochastic differential
equations (Itô, 1951). How can we describe the "noise" term mathematically and how
can we make sense of the second integral in Eq. (5.4)?

In this chapter I present Itô’s construction of this stochastic integral. First I review
some basic concepts and results of measure theory and probability theory that are used
in the following sections. Then I present Itô’s construction of the stochastic integral
and the Itô formula. This formula is a stochastic calculus counterpart of the chain rule.
Finally I present the definition of a stochastic differential equation and an existence
and uniqueness theorem for such differential equations.

17
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5.1 Measure Theory and Integrals
This section provides a short introduction to measure theory and integrals. The aim
of this section is to explain some basic definitions and concepts of measure theory and
integration that will be used throughout this thesis.

In the most general sense measure theory is the study of measures. These are
functions that assign a number to certain subsets of a given set. It generalizes the
intuitive notions of length, area and volume and builds the foundation for many other
areas of mathematics such as probability theory or ergodic theory.

The following definitions and theorems are adapted from Cyganowski et al. (2002)
unless otherwise stated. Before we can give the definition of a measure, we first need
to introduce the concept of σ-algebras. These are families of subsets of a given set on
which a measure can be defined.

Definition 5.1. If Ω is a given set, then a σ-algebra F on Ω is a family F of subsets
of Ω with the following properties:

(i) Ω ∈ F .
(ii) If A1, A2, A3 . . . ∈ F , then

⋃∞
i=1Ai ∈ F .

(iii) If A ∈ F , then AC ∈ F , where AC = Ω \ A is the complement of A in Ω.

The pair (Ω,F) is called a measurable space and the elements of F are named
F-measurable sets. Examples of σ-algebras are the family P(Ω) of all subsets of Ω or
the trivial σ-algebra {∅, Ω}.

Given any family U of subsets of Ω there exists a smallest σ-algebra on Ω containing
U . This σ-algebra, denoted by σ(U), is called the σ-algebra generated by U . For
example, if Ω = Rn and U is the family of all open subsets of Rn, then Bn = σ(U) is
called the Borel σ-algebra and the elements of Bn are named Borel sets (Mao, 2007).
The Borel σ-algebra Bn contains for example all open sets, all closed sets, all countable
unions of open sets, all countable intersections of closed sets and so forth.

Definition 5.2. Let (Ω,F) be a measurable space. A function f : Ω → R̄, where
R̄ = R ∪ {−∞,∞}, is called F -measurable (or just measurable) if for any Borel set
B ∈ B its preimage is F-measurable, that is,

f−1(B) = {ω ∈ Ω : f(ω) ∈ B} ∈ F . (5.5)

An example of a measurable function is the indicator function IA : Ω → R of
F -measurable sets A ∈ F defined as

IA(x) :=

{
1, for x ∈ A
0, for x /∈ A.

(5.6)

The only possible preimages here are ∅, A, Ω \ A and Ω, which are all F -measurable.
An important property of measurable functions is given in the next theorem (Schilling,

2005).

Theorem 5.3. Let (Ω,F) be a measurable space and let f, g : Ω → R̄ be F-measurable
functions. Then the functions

f + g, f − g, f · g (5.7)

are also F-measurable (whenever they are defined).
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We can now state the definition of a measure.

Definition 5.4. Let (Ω,F) be a measurable space. A function µ : F → R ∪ {∞} is
called a measure if it satisfies the following properties:
(i) For all sets A ∈ F , µ(A) ≥ 0.
(ii) µ(∅) = 0.
(iii) If sets A1, A2, A3, . . . ∈ F are pairwise disjoint (i.e., Ai ∩ Aj = ∅ if i 6= j), then

µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai). (5.8)

A measurable set N ∈ F is called a (µ−) null set if µ(N) = 0. We say a property
P = P (ω) holds (µ−) almost everywhere if P is true for all ω ∈ Ω apart from some ω
contained in a null set. For example, two functions f, g : Ω → R̄ are said to be equal
almost everywhere if µ({ω ∈ Ω : f(ω) 6= g(ω)}) = 0.

This concludes the introduction to measure theory. Next I want to give a brief
review of three main concepts of integration: the Riemann integral, the Stieltjes integral
and the Lebesgue integral.

Knowledge of the Lebesgue integral will be necessary for the next sections. Un-
derstanding the idea and limitations of the other two integrals will be helpful when
introducing the Itô integral. For more details see, e.g., Schilling (2005).

The standard integral of elementary calculus is the Riemann integral∫ b

a

f(x)dx, (5.9)

where f is a scalar function defined on the interval [a, b]. The Riemann integral gives
the area of the plane under the graph of the function f and above the interval [a, b] if
f takes nonnegative values. If the function f is both positive and negative, then the
integral corresponds to the signed area under the graph of f , i.e., the area above the
x-axis minus the area below the x-axis. The integral is defined as the limit of the sums
of areas of approximating rectangles. That is,∫ b

a

f(x)dx := lim
n∑
i=1

f(ξi)(xi − xi−1), (5.10)

where xi are points of a partition a = x0 < x1 < . . . < xn = b of the interval [a, b] and
the evaluation points ξi are arbitrarily chosen points in the subintervals [xi−1, xi]. This
limit is understood in such a way that n goes to infinity while the lengths δi = xi−xi−1

of the subintervals tend uniformly to zero. If this limit is the same for all such partitions
and any choices of points ξi, it is called the Riemann integral of the function f on [a, b].
The integral exists and is finite if f is continuous or if f is bounded with at most
countably many points of discontinuity.
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A possible generalization of the Riemann integral is the Stieltjes integral∫ b

a

f(x)dg(x), (5.11)

where f and g are two functions defined on the interval [a, b]. It is similarly defined to
be the limit ∫ b

a

f(x)dg(x) := lim
n∑
i=1

f(ξi)(g(xi)− g(xi−1)) (5.12)

of an approximating sum where the xi are points of a partition a = x0 < x1 < . . . <
xn = b of the interval [a, b] and the ξi ∈ [xi−1, xi] are arbitrarily chosen points. The
limit is again understood in such a way that n goes to infinity while the lengths of the
subintervals tend uniformly to zero. As with the Riemann integral one requires the
limit to be the same for all such partitions and any choices of evaluation points ξi.

The Stieltjes and Riemann integral coincide for the identity function g(x) = x. To
give a criterion for existence we need the concept of bounded variation (Schilling &
Partzsch, 2012).

Definition 5.5. Let g : [a, b] → R be a function and let Π = {a = x0 < x1 < . . . <
xn = b} be a finite partition of the interval [a, b] ⊂ R. We call

Sba(g;Π) :=
n∑
i=1

|g(xi)− g(xi−1)| (5.13)

the variation sum. The supremum of the variation sums over all finite partitions

V b
a (g) := sup {Sba(g;Π) : Π is a finite partition of [a, b]} (5.14)

is called the total variation of g on [a, b]. If V b
a (g) <∞, we say that g is of bounded

variation on [a, b].

The Stieltjes integral exists if f is continuous and g is of bounded variation on [a, b]
(Schilling & Partzsch, 2012). If, additionally, g is differentiable, then∫ b

a

f(x)dg(x) =

∫ b

a

f(x)g′(x)dx. (5.15)

More general than the Riemann and Stieltjes integral is the Lebesgue integral or integral
with respect to a measure. It extends the concept of integration to a larger class of
functions and domains on which these functions can be defined. Let (Ω,F) be a
measurable space, let µ : F → R ∪ {∞} be a measure, and let f : Ω → R̄ be a
measurable function. The Lebesgue integral of f over Ω with respect to the measure
µ is denoted by ∫

Ω

f dµ (5.16)

and is defined in three stages:
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1. First the integral is defined for nonnegative simple functions.
A simple function φ : Ω → R on a measurable space (Ω,F) is a function of the form

φ(x) =
k∑
i=1

ciIAi(x), (5.17)

where c1, c2, . . . , ck ∈ R and the sets A1, A2, . . . , Ak ∈ F are pairwise disjoint.
Let φ be a nonnegative simple function, i.e., with nonnegative coefficients ci in Eq.
(5.17). The Lebesgue integral of φ is then defined as∫

Ω

φ dµ :=
k∑
i=1

ciµ(Ai). (5.18)

2. Next, assume f to be a nonnegative measurable function. One can show that there
exists a sequence of nonnegative simple functions φn, n = 1, 2, 3, . . ., such that
φn(x) ≤ φn+1(x) for all n and x, and lim

n→∞
φn(x) = f(x). The Lebesgue integral of

f is then defined as ∫
Ω

f dµ := lim
n→∞

∫
Ω

φn dµ. (5.19)

3. Finally, let f be any measurable function. Then we can write

f = f+ − f−, (5.20)

where f+(x) = max{f(x), 0} and f−(x) = −min{f(x), 0} which are both nonneg-
ative measurable functions. The Lebesgue integral of f exists if at least one of∫
Ω
f+ dµ and

∫
Ω
f− dµ is finite. In this case define∫

Ω

f dµ :=

∫
Ω

f+ dµ−
∫
Ω

f− dµ. (5.21)

If
∫
Ω
|f | dµ <∞, we say that f is (Lebesgue) integrable. For a measurable set A ∈ F

one can define the Lebesgue integral of f over the set A as∫
A

f dµ :=

∫
Ω

fIA dµ. (5.22)

Finally, an important result from measure theory is Lebesgue’s dominated con-
vergence theorem which justifies passage to the limit under the sign of the integral
(Koralov & Sinai, 2007).

Theorem 5.6 (Lebesgue Dominated Convergence Theorem). If a sequence of
measurable functions {fn} converges to a measurale function f almost everywhere and

|fn| ≤ ϕ (5.23)

where ϕ is integrable on Ω, then the function f is integrable on Ω and

lim
n→∞

∫
Ω

fndµ =

∫
Ω

fdµ. (5.24)
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5.2 Probability Theory
This section provides a short introduction to probability theory, a branch of mathemat-
ics that is concerned with the analysis of random phenomena. On the basis of measure
theory I will review and explain the definitions and concepts that are necessary for the
construction of the Itô integral and definition of a stochastic differential equation.

Let (Ω,F) be a measurable space. In a probability context, Ω is called the sample
space and F is named the event space. In probability theory one studies the possible
outcomes of given events as well as their likelihoods and distributions. A map that
assigns each event a probability, taking values between 0 and 1, is the probability
measure (Kloeden & Platen, 1995).

Definition 5.7. A probability measure P is a measure on a measurable space (Ω,F)
for which P (Ω) = 1. The triple (Ω,F , P ) is called a probability space.

For an event A ∈ F we interpret P (A) as the likelihood that the event A occurs
and say that A occurs with probability one or almost surely (a.s.) if P (A) = 1. In the
remainder of this section let (Ω,F , P ) be a probability space.

The next definition by Cyganowski et al. (2002) introduces the concept of random
variables.

Definition 5.8. A function X : Ω → R is called a random variable if it is F-
measurable, i.e.,

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F (5.25)
for any set B ∈ B.

A random variable is a measurable function that assigns a real number to every
element in the sample space. For example, if an experiment consists of tossing a fair
coin ten times, the random variable X could be defined as the number of times the
coin turns up heads.

Why do we require the random variable X to be measurable? One might be in-
terested in the probability that a random variable takes on a value in an interval I.
In order to have a probability assigned to that set one needs the function X to be
measurable.

Given a random variable X the smallest σ-algebra on Ω with respect to which X is
measurable is called the σ-algebra generated by X and is denoted by σ(X) (Proschan
& Shaw, 2016).

A straightforward generalization of random variables are random vectors.

Definition 5.9. A function X : Ω → Rn is called a random vector if it is F-
measurable, i.e.,

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F (5.26)
for any set B ∈ Bn.

Since a random variable is just a one dimensional random vector, there is no formal
reason to distinguish between these terms and they are often used synonymously.

Two sets A,B ∈ F are said to be independent if P (A ∩ B) = P (A)P (B). The
following definition by Mao (2007) extends this concept to multiple sets and introduces
independence of σ-algebras and random variables.
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Definition 5.10. Let I be an index set.
(i) A collection of sets {Ai : i ∈ I} ⊂ F is said to be independent if

P (Ai1 ∩ · · · ∩ Aik) = P (Ai1) · · ·P (Aik) (5.27)

for all possible choices of indices i1, . . . , ik ∈ I.
(ii) A collection of sub-σ-algebras {Fi : i ∈ I} of F is said to be independent if for

every possible choice of indices i1, . . . , ik ∈ I,

P (Ai1 ∩ · · · ∩ Aik) = P (Ai1) · · ·P (Aik) (5.28)

holds for all Ai1 ∈ Fi1 , . . . , Aik ∈ Fik .
(iii) A family of random variables {Xi : I ∈ I} is said to be independent if the σ-

algebras σ(Xi), i ∈ I, generated by them are independent.
(iv) A random variable X and a σ-algebra H ⊂ F are said to be independent if σ(X)

and H are independent.

The most basic information about a random variable is given by its expectation
and variance (Mao, 2007).

Definition 5.11. Let X : Ω → R be a real-valued random variable. If X is integrable
with respect to the probability measure P then the number

E[X] :=

∫
Ω

XdP (5.29)

is called the expectation of X with respect to P. The number

V ar(X) = E
[
(X − E[X])2

]
(5.30)

is called the variance of X. If Y is another real-valued random variable,

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] (5.31)

is called the covariance of X and Y.

Two random variablesX and Y are said to be uncorrelated if Cov(X, Y ) = 0. IfX =
(X1, · · · , Xn)T is an Rn-valued random variable, we define E[X] := (E[X1], · · · , E[Xn])T .
The terms expected value or mean are sometimes used instead of expectation.

Two important properties of the expectation are summarized in the following the-
orem (Cyganowski et al., 2002).

Theorem 5.12. Let X and Y be two real-valued integrable random variables and
α, β ∈ R. Then
(i) E[αX + βY ] = αE[X] + βE[Y ] (linearity of the expectation).
(ii) E[XY ] = E[X]E[Y ] if X and Y are independent.

Using the linearity of the expectation one can derive an equivalent formula for the
variance which is particularly useful for calculations, namely V ar(X) = E[X2]−E[X]2.
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The following definitions introduce the distribution function and density function
of a random variable X (Evans, 2014).

Definition 5.13. Let X : Ω → R be a random variable. The distribution function of
X is the function FX : R→ [0, 1] defined by

FX(x) = P ({ω ∈ Ω : X(ω) ≤ x}), x ∈ R. (5.32)

That is, the distribution function of a random variable X, evaluated at x, is the
probability that X will take a value less than or equal to x.

Definition 5.14. Let X : Ω → R be a random variable and FX its distribution func-
tion. If there exists a nonnegative, integrable function f : R→ R such that

FX(x) =

∫ x

−∞
f(t)dt, (5.33)

then f is called the density function for X.

Example 5.15. If a random variable X : Ω → R has density

f(x) =
1√

2πσ2
e−

(x−m)2

2σ2 (x ∈ R), (5.34)

we say X has a Gaussian (or normal) distribution with mean m and variance σ2. In
this case we write X ∼ N(m,σ2) and say

X is an N(m,σ2) random variable.

For p ∈ [1,∞) we define the Lp-norm ‖X‖p of a random variable X : Ω → Rn by

‖X‖p := (E [|X|p])
1
p (5.35)

and the corresponding Lp-spaces by

Lp(Ω,Rn) := {X : Ω → Rn| ‖X‖p <∞}. (5.36)

With this norm the Lp-spaces are Banach spaces, i.e., complete normed vector spaces
(Øksendal, 2003). Complete in this case means that every Cauchy sequence in Lp(Ω,Rn)
is convergent.

There are two concepts of convergence in the context of probability theory that I
will use in the following sections (Mao, 2007).

Definition 5.16. Let X and Xk, k ≥ 1, be Rn-valued random variables.
(a) If for every ε > 0, P ({ω ∈ Ω : |Xk(ω)−X(ω)| > ε})→ 0 as k →∞, then {Xk}

is said to converge to X in probability.
(b) If Xk and X belong to Lp(Ω,Rn) and ‖Xk − X‖p → 0 as k → ∞, then {Xk} is

said to converge to X in Lp.
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For two events A,B ∈ F with P (B) > 0 the conditional probability of A given B,
denoted by P (A|B), is

P (A|B) :=
P (A ∩B)

P (B)
. (5.37)

Similarly, one can define the conditional expectation of a random variable X given B,
denoted by E[X|B], as

E[X|B] :=

∫
B
XdP

P (B)
, (5.38)

provided that the integral is finite. However, one frequently encounters a family of
conditions so we need a more general concept of conditional expectation. The next
definition by Koralov & Sinai (2007) introduces a generalization of this notion by
defining the conditional expectation of a random variable X given a sub-σ-algebra
H ⊂ F .

Definition 5.17 (Conditional expectation). Let X ∈ L1(Ω,R). If H ⊂ F is a
σ-algebra, then the conditional expectation of X given H, denoted by E[X|H], is a
random variable satisfying:
(i) E[X|H] is H-measurable,
(ii)

∫
H
E[X|H]dP =

∫
H
XdP , for all H ∈ H.

The conditional expectation E[X|G] can be interpreted as the best guess of the
value of X based on the information provided by G. The existence and uniqueness of
E[X|G] are guaranteed by the Radon-Nikodym Theorem (Øksendal, 2003).

The following theorem summarizes some important properties of the conditional
expectation (Øksendal, 2003).

Theorem 5.18. Suppose X, Y ∈ L1(Ω,R) and H ⊂ F is a σ-algebra. Then
(a) E[E[X|H]] = E[X].
(b) E[X|H] = X if X is H-measurable.
(c) E[X|H] = E[X] if X and H are independent.
(d) E[Y X|H] = Y E[X|H] if Y is H-measurable.

Until now we only looked at random variables as functions on a sample space
without regard to how these might depend on parameters. The next definition by Mao
(2007) introduces the concept of stochastic processes. These are families of random
variables indexed by a parameter.

Definition 5.19. A family {Xt}t∈I of Rn-valued random variables is called a stochastic
process with parameter set (or index set) I and state space Rn.

Usually the parameter set I is the half-line R+ = [0,∞), which is often thought of
as time. For each fixed t ∈ I we have a random variable

Ω 3 ω → Xt(ω) ∈ Rn. (5.39)

On the other hand, for each fixed ω ∈ Ω we have a function

I 3 t→ Xt(ω) ∈ Rn (5.40)
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which is called a realization or sample path of the stochastic process. That is why
we can use a stochastic process to represent randomly changing numerical values of
some system as time evolves. For example, the growth of a bacterial population or
the random fluctuations in an electrical signal. If we run an experiment and study the
values of X as time evolves, we are in fact looking at a sample path of X for some fixed
ω ∈ Ω. In general we will observe a different sample path if we rerun the experiment.

In this thesis I will use the notation Xt to denote sample paths of a stochastic
process, suppressing the sample space argument ω for compactness of notation when
the context is clear.

Next, I present two definitions related to stochastic processes (Mao, 2007).

Definition 5.20. (a) A filtration is a family {Ft}t≥0 of increasing sub-σ-algebras of
F (i.e., Ft ⊂ Fs ⊂ F for all 0 ≤ t < s <∞).

(b) A filtered probability space (Ω,F , {Ft}t≥0, P ) is a probability space equipped with
a filtration.

Intuitively, the σ-algebra F contains all events which might ever be observed or to
which we can assign probabilities. The filtration keeps track of what information is
available at each of the times t ≥ 0, where information only increases with time. So
for each t ≥ 0 the σ-algebra {Ft} tells us which events might be observed at time t.

Definition 5.21. Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space and let {Xt}t∈I
be an Rn-valued stochastic process. It is said to be
(i) continuous if for almost all ω ∈ Ω the function Xt(ω) is continuous on t ≥ 0.
(ii) {Ft}-adapted if for every t, Xt is {Ft}-measurable.

A stochastic process {Xt}t≥0 is always adapted to its natural filtration {FXt }t≥0

where FXt = σ (∪0≤s≤t σ(Xs)) (Grigoriu, 2002). This is the smallest filtration with
respect to which {Xt}t≥0 is adapted.

5.3 The Wiener Process and White Noise

We can now state the definition of a Wiener process (Mao, 2007). This process was
proposed by Norbert Wiener as a mathematical description of Brownian motion, i.e.,
the irregular motion of pollen particles on a water surface due to random collisions with
the water molecules. That is why the Wiener process is often called Brownian motion
synonymously due to its connection with the physical process originally observed by
Robert Brown in 1828 (Mao, 2007).

Definition 5.22. Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space. A one-dimensional
Wiener process is a real-valued continuous {Ft}-adapted stochastic process {Wt}t≥0 with
the following properties:
(i) W0 = 0 a.s.,
(ii) for 0 ≤ s < t < ∞, the increment Wt −Ws is normally distributed with mean

zero and variance t− s,
(iii) for 0 ≤ s,< t <∞, the increment Wt −Ws is independent of Fs.
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If {Wt}t≥0 is a Wiener process, then for all times 0 = t0 < t1 < . . . < tn < ∞ the
increments (Wti −Wti−1

), 1 ≤ i ≤ n, are independent (Karatzas & Shreve, 1991). We
say that the Wiener process has independent increments.

Almost all sample paths of the Wiener process are continuous, but they are non
differentiable for all t ≥ 0. Moreover, the sample paths are of unbounded variation
almost surely over any finite interval (Socha, 2008).

An appropriate mathematical interpretation for the "noise" term in Eq. (5.4) is
the so-called white noise process (Kuo, 2006). The white noise process can be for-
mally considered as the generalized derivative of a Wiener process {Wt}t≥0 (Kloeden
& Platen, 1995). Before we can state the definition of the white noise process we need
to introduce some additional concepts from stochastic calculus (Lefebvre, 2007).

Definition 5.23. We say that the random vector (X1, . . . , Xn) has a multinormal
distribution if each random variable Xk can be expressed as a linear combination of
independent random variables Z1, . . . , Zm, where Zj ∼ N(0, 1), for j = 1, . . . ,m. That
is, if

Xk = µk +
m∑
j=1

ckjZj for k = 1 . . . , n (5.41)

where µk is a real constant, for all k.

Definition 5.24. A stochastic process {Xt}t∈I is said to be a Gaussian process if the
random vector (Xt1 , . . . , Xtn) has a multinormal distribution, for any n and for all
t1, . . . , tn.

Definition 5.25. Let {Xt}t∈I be a stochastic process. The autocorrelation function and
the autocovariance function of the process at the point (t1, t2) are defined, respectively,
by

RX(t1, t2) = E[Xt1Xt2 ], (5.42)

and
CX(t1, t2) = RX(t1, t2)− E[Xt1 ]E[Xt2 ]. (5.43)

We say that the stochastic process is wide-sense stationary if there is a constant µ and
a function c : R→ R such that

E[Xt] = µ and RX(t1, t2) = c(t2 − t1) (5.44)

for all t1, t2 ∈ I.

So a wide-sense stationary process has a constant mean and its autocorrelation
function only depends of the difference s = t2 − t1, i.e., it does not change by shifts in
time.

Definition 5.26. The spectral density of a wide-sense stationary stochastic process
{Xt}t∈I is the Fourier transform SX(ω) of its autocorrelation function

SX(ω) =

∫ ∞
−∞

eiωsc(s)ds (5.45)
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Now we can state the definition of a white noise process (Kuo, 2006).

Definition 5.27. A white noise (process) is defined to be a generalized wide-sense sta-
tionary Gaussian process {Zt}t≥0 with mean zero and autocovariance function
CZ(t1, t2) = δ(t2 − t1). Here δ(·) is the Dirac delta function.

The Dirac delta function is a generalized function with δ(s) = 0 for all s 6= 0 such
that ∫ ∞

−∞
f(s)δ(s)ds = f(0) (5.46)

for all functions f continuous at s = 0 (Kloeden & Platen, 1995).
Note that, since E[Zt] = 0, we also have RZ(t1, t2) = δ(t2−t1). The spectral density

function of the white noise Zt is given by

SZ(ω) =

∫ ∞
−∞

eiωsδ(s)ds = 1. (5.47)

So the white noise Zt has a constant nonzero spectral density. That is where the name
white noise comes from as its average power is uniformly distributed in frequency which
is a characteristic of white light.

Although the Wiener process is non differentiable in the classical sense, using the
concept of generalized functions one can show (Horsthemke & Lefever, 1984) that the
white noise is the generalized derivative of a Wiener process. In fact this property is
often used as an alternative definition of white noise (Socha, 2008).

This means, in order to give a well-defined meaning to Eq. (5.3)

dN(t)

dt
= r(t)N(t) + σ(t)N(t)”noise”, N(0) = N0.

we need to rewrite the equation in integral form, that is,

N(t) = N0 +

∫ t

0

r(s)N(s)ds+

∫ t

0

σ(s)N(s)Zt ds,

assuming that the noise can be described by a white noise process Zt. Since the white
noise is the generalized derivative of a Wiener process, we can write the second integral
as ∫ t

0

σ(s)N(s)Zt ds =

∫ t

0

σ(s)N(s)dWs, (5.48)

that is, as an integral with respect to a Wiener process (Horsthemke & Lefever, 1984).
Because the sample paths of a Wiener process have unbounded variation almost

surely over any finite interval we cannot simply define this integral as a Stieltjes integral
(see section 5.1). In the next section I present Itô’s idea to give a meaning to this
stochastic integral.
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5.4 The Itô Integral
In this section I will explain how the stochastic integral∫ b

a

XtdWt (5.49)

of a random variable X : Ω → R with respect to a Wiener process {Wt}t>0 can be
defined. The definitions and theorems in this section are adapted from Mao (2007)
unless otherwise stated.

Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space and let {Wt}t≥0 be a one-
dimensional Wiener process defined on the probability space satisfying the following
conditions:

(i) For each t, Wt is Ft-measurable;
(ii) For any s ≤ t, the increment Wt −Ws is independent of Fs.

Note that we can always choose the natural filtration {FWt }t≥0 as the filtration
we are working with if the Wiener process {Wt}t≥0 has independent increments. Then
{Wt}t≥0 is a Wiener process with respect to {FWt }t≥0 that satisfies the two assumptions
above (Karatzas & Shreve, 1991).

Definition 5.28. Let 0 ≤ a < b < ∞. Denote by M2([a, b];R) the space of all
real-valued measurable {Ft}-adapted processes X = {Xt}a≤t≤b such that

‖X‖a,b :=

(
E

∫ b

a

X2
t dt

)1/2

<∞. (5.50)

Two processes X and X̄ in M2([a, b];R) are called equivalent and we write X = X̄ if
‖X − X̄‖a,b = 0.

For a stochastic process X ∈ M2([a, b];R) it is possible to define the Itô integral∫ b
a
XtdWt. The idea is similar to the definition of the Lebesgue integral: First, we

define the Itô Integral for a class of simple processes. Each X ∈ M2([a, b];R) can be
approximated by a sequence Xn of such simple processes and the limit of

∫ b
a
Xn
t dWt is

then defined as the Itô integral
∫ b
a
XtdWt.

Definition 5.29. A real-valued stochastic process X = {Xt}a≤t≤b is called a simple
process if there exists a partition a = t0 < t1 < · · · < tk = b of [a, b], and bounded
random variables ξi, 0 ≤ i ≤ k − 1, such that ξi is Fti-measurable and

Xt =
k−1∑
i=0

ξiI[ti,ti+1)(t), (5.51)

where I[ti,ti+1)(t) is the indicator function of the interval [ti, ti+1). Denote byM0([a, b];R)
the family of all such processes.
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Definition 5.30. For a simple process X ∈M0([a, b];R) define∫ b

a

XtdWt :=
k−1∑
i=0

ξi(Wti+1
−Wti). (5.52)

This integral is called the stochastic integral or the Itô integral of X with respect to the
Wiener process {Wt}.

The next lemma is crucial for the definition of the Itô integral. The lemma shows
that the mapping associating a step process X with its stochastic integral preserves
the norm, i.e., ‖

∫ b
a
XtdWt‖2 = ‖X‖a,b. Such mappings are called isometries (Vigirdas,

2011). We will use the lemma to proof the existence of the Itô integral.

Lemma 5.31 (The Itô isometry). If X ∈M0([a, b];R), then

E

[∫ b

a

XtdWt

]
= 0, (5.53)

E

[(∫ b

a

XtdWt

)2
]

= E

[∫ b

a

X2
t dt

]
. (5.54)

Proof. The following proof is adapted from Mao (2007) and Lindström et al. (2015).
By the linearity of the expectation,

E

[∫ b

a

XtdWt

]
= E

[
k−1∑
i=0

ξi(Wti+1
−Wti)

]
=

k−1∑
i=0

E
[
ξi(Wti+1

−Wti)
]
. (5.55)

Since ξi is Fti-measurable and Wti+1
−Wti is independent of Fti by definition,

E
[
ξi(Wti+1

−Wti)
] 5.18. (a)

= E
[
E
[
ξi(Wti+1

−Wti)|Fti
]]

(5.56)
5.18. (d)

= E
[
ξiE

[
Wti+1

−Wti |Fti
]]

(5.57)
5.18. (c)

= E
[
ξiE

[
Wti+1

−Wti

]]
(5.58)

= 0, (5.59)

where the last step follows since E
[
Wti+1

−Wti

]
= 0 by definition. This proofs the first

part (5.53) of the lemma. Next, I proof the second part (5.54) of the lemma. Again,
by the linearity of the expectation,

E

[(∫ b

a

XtdWt

)2
]

= E

(k−1∑
i=0

ξi(Wti+1
−Wti)

)2
 (5.60)

= E

[
k−1∑
i,j=0

ξiξj(Wti+1
−Wti)(Wtj+1

−Wtj)

]
(5.61)

=
k−1∑
i,j=0

E[ξiξj(Wti+1
−Wti)(Wtj+1

−Wtj)]. (5.62)
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For i 6= j, say i < j,

E[ξiξj(Wti+1
−Wti)(Wtj+1

−Wtj)] (5.63)
5.18. (a)

= E[E[ξiξj(Wti+1
−Wti)(Wtj+1

−Wtj)|Ftj ]]. (5.64)

The random variable ξj is Ftj -measurable as well as ξi, Wti+1
and Wti since Fti ⊂ Ftj

and ti+1 ≤ tj for i < j. From this fact it follows that ξiξj(Wti+1
−Wti) is Ftj -measurable

by theorem (5.3) and

E[E[ξiξj(Wti+1
−Wti)(Wtj+1

−Wtj)|Ftj ]] (5.65)
5.18. (d)

= E[ξiξj(Wti+1
−Wti)E[Wtj+1

−Wtj |Ftj ]]. (5.66)

Because Wtj+1
−Wtj is independent of Ftj , we have

E[ξiξj(Wti+1
−Wti)E[Wtj+1

−Wtj |Ftj ]] (5.67)
5.18. (c)

= E[ξiξj(Wti+1
−Wti)E[Wtj+1

−Wtj ]] = 0, (5.68)

since E[Wtj+1
−Wtj ] = 0 by definition.

On the other hand, for i = j we have

E[ξ2
i (Wti+1

−Wti)
2]

5.18. (a)
= E[E[ξ2

i (Wti+1
−Wti)

2|Fti ]] (5.69)
5.18. (d)

= E[ξ2
iE[(Wti+1

−Wti)
2|Fti ]] (5.70)

5.18. (c)
= E[ξ2

iE[(Wti+1
−Wti)

2]] (5.71)
= E[ξ2

i (ti+1 − ti)], (5.72)

since E[(Wti+1
−Wti)

2] = V ar(Wti+1
−Wti) +E[Wti+1

−Wti ]
2 = ti+1 − ti by definition

of the Wiener process.
Combining, we obtain

k−1∑
i,j=0

E[ξiξj(Wti+1
−Wti)(Wtj+1

−Wtj)] (5.73)

=
k−1∑
i=0

E[ξ2
i (ti+1 − ti)] (5.74)

= E

[
k−1∑
i=0

ξ2
i (ti+1 − ti)

]
(5.75)

= E

[∫ b

a

X2
t dt

]
. (5.76)
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The next lemma shows that every X ∈ M2([a, b];R) can be approximated in
M2([a, b];R) by a sequence of simple processes.

Lemma 5.32. For any X ∈ M2([a, b];R) there exists a sequence {Xn} of simple
processes such that

lim
n→∞

E

[∫ b

a

(Xn
t −Xt)

2 dt

]
= 0. (5.77)

Before I continue with the proof of this lemma I will briefly repeat two additional
lemmas that are necessary for the proof. The first lemma is the Schwarz inequality
(Abramowitz & Stegun, 1972) and the second is about the mean-square continuity of
square-integrable functions (Vigirdas, 2011).

Lemma 5.33 (Schwarz’s inequality). Let f, g : [a, b] → R be two square integrable
functions. Then [∫ b

a

f(x)g(x)dx

]2

≤
∫ b

a

[f(x)]2 dx

∫ b

a

[f(x)]2 dx (5.78)

Lemma 5.34. Let f : [a, b]→ R be a square integrable function. Then∫ b

a

[f(t+ h)− f(t)]2 dt→ 0 as h→ 0. (5.79)

The following proof is adapted from Vigirdas (2011) and Mao (2007).

Proof of Lemma 1.27. The proof of this lemma will be divided into three steps: First,
I show that every X ∈ M2([a, b];R) can be approximated by a sequence of bounded
processes which in turn can be approximated by a sequence of bounded, continuous
processes. Finally, these bounded, continuous processes can then be approximated by
a sequence of simple processes.

Step 1. For any X ∈ M2([a, b];R), there exists a sequence {Y n} of bounded pro-
cesses inM2([a, b];R) such that

lim
n→∞

E

[∫ b

a

(Y n
t −Xt)

2 dt

]
= 0. (5.80)

Proof. For each n define

Y n
t :=


−n if Xt < −n
Xt if − n ≤ Xt ≤ n

n if Xt > n.

(5.81)

Then Y n ∈ M2([a, b];R) and |Y n
t | ≤ n for each n. Since Y n

t = Xt when |Xt| ≤ n,
one has lim

n→∞
Y n
t = Xt, and thus lim

n→∞
(Y n

t − Xt)
2 = 0. On the other hand, using the

inequality (a− b)2 ≤ 2(a2 + b2) and |Y n
t | ≤ |Xt|, one has∫ b

a

(Y n
t −Xt)

2dt ≤ 2

∫ b

a

(Y n
t )2 +X2

t dt ≤ 4

∫ b

a

X2
t dt. (5.82)
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Since X ∈M2([a, b];R),

E

[∫ b

a

X2
t dt

]
<∞. (5.83)

So (5.80) follows by the dominated convergence theorem (5.6).

Step 2. Let Y ∈ M2([a, b];R) be bounded. Then there exists a sequence {Zn} of
bounded continuous processes inM2([a, b];R) such that

lim
n→∞

E

[∫ b

a

(Zn
t − Yt)

2 dt

]
= 0. (5.84)

Proof. Assume |Yt| ≤ C for all t ∈ [a, b]. For each n define

Zn
t := n

∫ t

t−1/n

Ysds (5.85)

with the convention that Ys = 0 for s < 0. Then the processes Zn are adapted since Zn
t

depends only on the values of the adapted process Y until the time t. Since |Yt| ≤ C,
one has |Zn

t | ≤ n(1/n)C = C, implying that Zn
t is bounded. Moreover,

|Zn
t′ − Zn

t | =

∣∣∣∣∣n
∫ t′

t′−1/n

Ysds− n
∫ t

t−1/n

Ysds

∣∣∣∣∣ (5.86)

≤ n

(∣∣∣∣∣
∫ t′

t′−1/n

Ysds

∣∣∣∣∣+

∣∣∣∣∫ t

t−1/n

Ysds

∣∣∣∣
)

(5.87)

= n

(∣∣∣∣∣
∫ t′−1/n

t′
Ysds

∣∣∣∣∣+

∣∣∣∣∫ t

t−1/n

Ysds

∣∣∣∣
)

(5.88)

≤ n

(∫ t′−1/n

t′
|Ys| ds+

∫ t

t−1/n

|Ys| ds

)
(5.89)

≤ nC(t′ − 1

n
− t′) + nC(t− t+

1

n
) (5.90)

= nC(t− t′) + nC(t′ − t) (5.91)
≤ 2nC|t′ − t|. (5.92)
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This estimate implies that Zn
t is also continuous. It follows that

E

[∫ b

a

(Zn
t − Yt)

2 dt

]
=

∫ b

a

E
[
(Zn

t − Yt)
2] dt (5.93)

=

∫ b

a

E

[(
n

∫ t

t−1/n

Ysds− Yt
)2
]
dt (5.94)

=

∫ b

a

E

[(
n

∫ t

t−1/n

Ys − Ytds
)2
]
dt (5.95)

(Schwarz’s inequality) ≤
∫ b

a

E

[
n

∫ t

t−1/n

(Ys − Yt)2ds

]
dt (5.96)

(change of variables s = t− s̄) =

∫ b

a

E

[
n

∫ 0

1/n

−(Yt−s̄ − Yt)2ds̄

]
dt (5.97)

=

∫ b

a

E

[
n

∫ 1/n

0

(Yt−s̄ − Yt)2ds̄

]
dt (5.98)

= n

∫ 1/n

0

E

[∫ T

0

(Yt−s̄ − Yt)2dt

]
ds̄. (5.99)

By the mean-square continuity (5.34),∫ b

a

(Yt−s̄ − Yt)2dt→ 0 as s̄→ 0. (5.100)

Since (Yt−s̄ − Yt)2 ≤ 4C2,

E

[∫ b

a

(Yt−s̄ − Yt)2dt

]
→ 0 as s̄→ 0 (5.101)

by the dominated convergence theorem (5.6). Therefore, for every ε > 0, there is
n0 ∈ N such that

E

[∫ b

a

(Yt−s̄ − Yt)2dt

]
< ε for 0 < s̄ < 1/n0, (5.102)

and thus

E

[∫ b

a

(Zn
t − Yt)

2 dt

]
< n

∫ 1/n

0

ε ds̄ = ε for n > n0 (5.103)

which implies (5.84).
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Step 3. If Z ∈ M2([a, b];R) is bounded and continuous, then there exists a
sequence {Xn} of simple processes such that

lim
n→∞

E

[∫ b

a

(Xn
t − Zt)

2 dt

]
= 0. (5.104)

Proof. Assume |Zt| ≤ M for all t ∈ [a, b]. Let Πn = {a = tn0 < tn1 < . . . < tnkn = b},
n ∈ N, be a sequence of partitions of the interval [a, b] such that max|tni+1− tni | → 0 as
n→∞.

For each n define
Xn
t := Ztni , t ∈ [tni , t

n
i+1). (5.105)

This process is simple and adapted to Ft. Since Z is continuous, |Xn
t − Zt|2 → 0 as

n→∞. On the other hand, since |Zt| ≤M , one has |Xn
t | ≤M . Therefore,

|Xn
t − Zt|2 ≤ 2[(Xn

t )2 + Z2
t ] ≤ 4M2, t ∈ [a, b]. (5.106)

Since

E

[∫ b

a

4M2

]
<∞, (5.107)

statement (5.104) follows by the dominated convergence theorem (5.6).

The conclusion of lemma (5.32) then follows from steps 1-3.

We can now use lemma (5.32) to define the Itô integral∫ b

a

Xt dWt (5.108)

for a process X ∈ M2([a, b];R). By lemma (5.32) there exists a sequence {Xn} of
simple processes such that

lim
n→∞

E

[∫ b

a

(Xn
t −Xt)

2dt

]
= 0. (5.109)

The Itô integral is then defined as the limit∫ b

a

Xt dWt := lim
n→∞

∫ b

a

Xn
t dWt in L2(Ω,R). (5.110)

To show the existence of this limit we use lemma (5.31) together with the inequality
(a+ b)2 ≤ 2(a2 + b2). Then one has that

E

[(∫ b

a

Xn
t dWt −

∫ b

a

Xm
t dWt

)2
]

= E

[(∫ b

a

Xn
t −Xm

t dWt

)2
]

(5.111)

(5.31)
= E

[∫ b

a

(Xn
t −Xm

t )2 dt

]
= E

[∫ b

a

((Xn
t −Xt) + (Xt −Xm

t ))2 dt

]
(5.112)

≤ 2E

[∫ b

a

(Xn
t −Xt)

2dt

]
+ 2E

[∫ b

a

(Xm
t −Xt)

2dt

]
→ 0, as n,m→∞. (5.113)
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This means that {
∫ b
a
Xn
t dWt} is a Cauchy sequence in L2(Ω,R). Since L2(Ω,R) is

complete, the Cauchy sequence converges. Therefore the limit exists. This leads to the
following definition.

Definition 5.35 (Itô integral). Let X ∈ M2([a, b];R). The Itô integral of X with
respect to {Wt} is defined by∫ b

a

Xt dWt = lim
n→∞

∫ b

a

Xn
t dWt in L2(Ω,R), (5.114)

where {Xn} is a sequence of simple processes such that

lim
n→∞

E

[∫ b

a

(Xn
t −Xt)

2dt

]
= 0. (5.115)

The above definition does not depend on the choice of the particular sequence {Xn}.
Let {X̃n} be another sequence of simple processes converging to X in the sense that

lim
n→∞

E

[∫ b

a

(X̃n
t −Xt)

2dt

]
= 0. (5.116)

Define the new sequence {Y n}, where Y 2n−1 = Xn and Y 2n = X̃n. Then {Y n} is also
convergent to X in the same sense and the sequence of integrals {

∫ b
a
Y n
t dWt} is con-

vergent in L2(Ω,R) as shown before. This means that its subsequences {
∫ b
a
Xn
t dWt}

and {
∫ b
a
X̃n
t dWt} have the same limit.

The spaceM2([a, b];R) is still quite restrictive and for various applications we need
to extend the Itô integral to a larger class of integrands. In the following section I will
explain how the integral can be extended to random processes X for which∫ T

0

X2
t dt <∞ a.s. for every T > 0. (5.117)

Furthermore we will extend the Itô integral to the multi-dimensional case. This will be
necessary to study multidimensional stochastic differential equations. The following
definitions and theorems as well as their proofs can be found in Mao (2007) unless
otherwise stated.

Definition 5.36. Let X ∈M2([0, T ];R). Define

I(t) :=

∫ t

0

Xs dWs for 0 ≤ t ≤ T, (5.118)

where, by definition, I(0) =
∫ 0

0
Xs dWs = 0. We call I(t) the indefinite Itô integral of

X.
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The next theorem states that for stochastic processes X ∈M2([0, T ];R) the indef-
inite Itô integral can be chosen to depend continuously on t.

Theorem 5.37. If X ∈ M2([0, T ];R), then the indefinite integral {I(t)}0≤t≤T has a
continuous version, i.e., there exists a continuous stochastic process Jt on (Ω,F , P )
such that

P (J(t) = I(t)) = 1 for all 0 ≤ t ≤ T. (5.119)

From now on we assume that
∫ t

0
Xs dWs means a continuous version of the integral.

Definition 5.38. Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space. Define F∞ :=
σ
(⋃

t≥0Ft
)
. A random variable τ : Ω → [0,∞] (it may take the value ∞) is called

an {Ft}-stopping time (or simply stopping time) if {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft for any
t ≥ 0.

A stopping time is a specific type of random variable. One can interpret the stopping
time as the waiting time that goes by until some random event happens. The filtration
{Ft}t≥0 keeps track of what information is available at each of the times t ≥ 0, i.e.,
which events might be observed at time t. So the condition {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft
for any t ≥ 0 in the above definition means that, for τ to be a stopping time, it should
be possible to decide whether this event has already occurred or not by time t.

Definition 5.39. If τ and ρ are two stopping times with τ ≤ ρ a.s., we define

[[τ, ρ[[ := {(t, ω) ∈ R+ ×Ω : τ(ω) ≤ t < ρ(ω)} (5.120)

and call it a stochastic interval. Similarly, we can define stochastic intervals [[τ, ρ]],
]]τ, ρ]] and ]]τ, ρ[[.

Definition 5.40. Let X ∈ M2([0, T ];R) and let τ be a stopping time such that 0 ≤
τ ≤ T . Then {I[[0,τ ]](t)Xt}0≤t≤T ∈M2([0, T ];R) and we define∫ τ

0

Xs dWs :=

∫ T

0

I[[0,τ ]](s)Xs dWs. (5.121)

Furthemore, if ρ is another stopping time with 0 ≤ ρ ≤ τ , we define∫ τ

ρ

Xs dWs :=

∫ τ

0

Xs dWs −
∫ ρ

0

Xs dWs. (5.122)

The following two definitions extend the Itô integral to the multi-dimensional case.
Here and in the remainder of this section I use superscripts to index the components
of vectors.

Definition 5.41. Let {Wt}t≥0 be an m-dimensional Wiener Process adapted to the
filtration {Ft}t≥0. That is, Wt = (W 1

t , . . . ,W
m
t )T where the W j for j = 1, . . . ,m

are one-dimensional pairwise independent Wiener processes adapted to the filtration
{Ft}t≥0.

Denote byM2([0, T ];Rd×m) the family of all d×m-matrix valued measurable {Ft}-
adapted processes X = {(X ij

t )d×m}0≤t≤T such that

E

[∫ T

0

‖Xs‖2 dt

]
<∞. (5.123)

Here, ‖A‖ denotes the trace norm of a matrix A, i.e., ‖A‖ =
√

trace(ATA).
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Definition 5.42. Let X ∈ M2([0, T ];Rd×m). We define the multi-dimensional indefi-
nite Itô integral

∫ t

0

Xs dWs =

∫ t

0

X
11
s · · · X1m

s
...

...
Xd1
s · · · Xdm

s


dW 1

s
...

dWm
s

 (5.124)

to be the d-column-vector-valued process whose i’th component is the following sum of
one-dimensional Itô integrals

m∑
j=1

∫ t

0

X ij
s dW

j
s . (5.125)

Next, we extend the Itô integral to a larger class of integrands.

Definition 5.43. Let 0 ≤ a < b <∞.
(i) Denote by L2([a, b];Rd×m) the family of all d×m-matrix valued measurable {Ft}-

adapted processes X = {(X ij
t )d×m}a≤t≤b such that∫ b

a

‖Xt‖2 dt <∞ a.s. (5.126)

(ii) Let L2(R+;Rd×m) denote the family of all d×m-matrix-valued measurable {Ft}-
adapted processes X = {(X ij

t )d×m}t≥0 such that X ∈ L2([0, T ];Rd×m) for every
T > 0.

(iii) Let M2(R+;Rd×m) denote the family of all processes X ∈ L2(R+;Rd×m) such
that

E

[∫ T

0

‖Xt‖2 dt

]
<∞ for every T > 0. (5.127)

We want to define the Itô integral for all processes in L2(R+;Rd×m). Clearly, if
X ∈M2(R+;Rd×m), then {Xt}0≤t≤T ∈M2([0, T ];Rd×m) for every T > 0. This means
that the indefinite integral

∫ t
0
Xs dWs, t > 0, is well defined for X ∈M2(R+;Rd×m).

Let X ∈ L2(R+;Rd×m). For every integer n ≥ 1 define the stopping time

τn := n ∧ inf{t ≥ 0 :

∫ t

0

‖Xs‖2 ds ≥ n} (5.128)

where a∧ b denotes the minimum of a and b. Then {XtI[[0,τn]](t)}t≥0 ∈M2(R+;Rd×m).
So the indefinite integral

In(t) =

∫ t

0

XsI[[0,τn]](s) dWs, t ≥ 0 (5.129)

is well defined. Moreover, for 1 ≤ n ≤ m and t ≥ 0 we have

Im(t ∧ τn) =

∫ t∧τn

0

XsI[[0,τm]](s) dWs (5.130)

=

∫ t

0

XsI[[0,τm]](s)I[[0,τn]](s) dWs (5.131)

=

∫ t

0

XsI[[0,τn]](s) dWs = In(t). (5.132)
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This implies
Im(t) = In(t), 0 ≤ t ≤ τn. (5.133)

So we can define the indefinite Itô integral of X ∈ L2(R+;Rd×m) as

I(t) := In(t) on 0 ≤ t ≤ τn. (5.134)

Definition 5.44. Let X = {Xt}t≥0 ∈ L2(R+;Rd×m). The indefinite Itô integral of X
with respect to {Wt} is the Rd-valued process {I(t)}t≥0 defined by (5.134).

5.5 Itô’s Formula
In the previous section I explained the basic definition and extension of the Itô integral.
However, for explicit calculations this definition of the integral can be very arduous.
The situation is similar for ordinary Riemann or Lebesgue integrals where one usually
uses the fundamental theorem of calculus and the chain rule for actual computations.

The Itô formula, named after Kiyoshi Itô (Itô, 1951), is an identity that serves as
the stochastic calculus counterpart of the chain rule. The formula is very useful for
evaluating Itô integrals and plays a key role in the derivation of numerical schemes for
the approximate solution of stochastic differential equations.

In this section I will show the one-dimensional Itô formula and its generalization to
the multi-dimensional case (Mao, 2007). Let (Ω,F , {Ft}t≥0, P ) be a filtered probability
space and let {Wt}t≥0 be a one-dimensional Brownian motion adapted to the filtration
{Ft}t≥0.

Definition 5.45. Let 0 ≤ a < b <∞.
(i) Denote by L1([a, b];Rd) the family of all Rd-valued measurable Ft-adapted pro-

cesses X = {Xt}a≤t≤b such that∫ b

a

|Xt|dt <∞ a.s. (5.135)

Here, |v| denotes the Euclidean norm of a vector v.
(ii) Let L1(R+;Rd) denote the family of all Rd-valued measurable

Ft-adapted processes X = {Xt}t≥0 such that X ∈ L1([0, T ];Rd) for every T > 0.

Definition 5.46. A one-dimensional Itô process is a continuous adapted process Xt

on t ≥ 0 of the form

Xt = X0 +

∫ t

0

fs ds+

∫ t

0

gs dWs, (5.136)

where f ∈ L1(R+;R) and g ∈ L2(R+;R).

The first integral in Eq. (5.136) is an ordinary Riemann integral and the second is
an Itô integral. Equation (5.136) is often written in the shorter differential form

dXt = ftdt+ gtdWt. (5.137)

This is just an abbreviated notation for Eq. (5.136) and we say that Xt has stochastic
differential given by (5.137).
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Denote by C1,2(R+ × Rn;R) the family of all real-valued functions V (t, x) defined
on R+×Rn such that they are continuously twice differentiable in x and once in t. For
V ∈ C1,2(R+ × Rn;R) we define

Vt :=
∂V

∂t
, Vx :=

(
∂V

∂x1

, · · · , ∂V
∂xn

)
,

Vxx :=

(
∂2V

∂xi∂xj

)
n×n

=


∂2V

∂x1∂x1
· · · ∂2V

∂x1∂xd...
...

∂2V
∂xd∂x1

· · · ∂2V
∂xd∂xd

 .

Theorem 5.47 (The one-dimensional Itô formula). Let Xt be an Itô process on
t ≥ 0 with the stochastic differential

dXt = ftdt+ gtdWt, (5.138)

where f ∈ L1(R+;R) and g ∈ L2(R+;R). Let V ∈ C1,2(R+ ×R;R). Then V (t,Xt)
is again an Itô process with the stochastic differential given by

dV (t,Xt) =

[
Vt(t,Xt) + Vx(t,Xt)ft +

1

2
Vxx(t,Xt)g

2
t

]
dt (5.139)

+ Vx(t,Xt)gtdWt a.s.

A proof of the theorem can be found, e.g., in Mao (2007). The following definition
and theorem extend the one-dimensional Itô formula to the multi-dimensional case.

Definition 5.48. Let {Wt}t≥0 be an m-dimensional Wiener process adapted to the
filtration {Ft}t≥0. A d-dimensional Itô process is an Rd-valued continuous adapted
process Xt = (X1

t , . . . , X
d
t )T on t ≥ 0 of the form

Xt = X0 +

∫ t

0

fs ds+

∫ t

0

gs dWs (5.140)

where f = (f 1, . . . , fd)T ∈ L1(R+;Rd) and g = (gij)d×m ∈ L2(R+;Rd×m). We say that
Xt has stochastic differential given by

dXt = ftdt+ gtdWt. (5.141)

This means that

dX i
t = f itdt+

m∑
j=1

gijt dW
j
t for i = 1, . . . , d. (5.142)

Theorem 5.49 (The multi-dimensional Itô formula). Let Xt be a d-dimensional
Itô process on t ≥ 0 with the stochastic differential

dXt = ftdt+ gtdWt, (5.143)

where f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd×m). Let V ∈ C1,2(R+ × Rd;R). Then
V (t,Xt) is again an Itô process with the stochastic differential given by

dV (t,Xt) =

[
Vt(t,Xt) + Vx(t,Xt)ft +

1

2
trace

(
gTt Vxx(t,Xt)gt

)]
dt (5.144)

+ Vx(t,Xt)gtdWt a.s.
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The following example illustrates the use of Itô’s formula for evaluating Itô integrals.

Example 5.50. Let {Wt} be a one-dimensional Wiener process. We want to compute
the Itô integral ∫ t

0

Wt dWt. (5.145)

Choose V (t, x) = x2 and Xt = Wt, i.e., ft = 0 and gt = 1. Then by Itô’s formula (5.47)
we get

d(W 2
t ) = dt+ 2WtdWt. (5.146)

That is,

W 2
t = t+ 2

∫ t

0

Wt dWt. (5.147)

This implies that ∫ t

0

Wt dWt =
1

2
W 2
t −

1

2
t. (5.148)

5.6 Stochastic Differential Equations
Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space. Throughout this section let
{Wt = (W 1

t , . . .W
m
t )T}t≥0 be an m-dimensional Wiener process defined on the space.

Let t0 and T be two nonnegative real numbers such that 0 ≤ t0 < T < ∞. Let
X0 be an Ft0-measurable Rd-valued random variable such that E [|X0|2] < ∞. Let
f : [t0, T ]× Rd → Rd and g : [t0, T ]× Rd → Rd×m be two measurable functions.

A d-dimensional stochastic differential equation of Itô type is an equation of the
form

dXt = f(t,Xt)dt+ g(t,Xt)dWt on t0 ≤ t ≤ T (5.149)

with initial value Xt0 = X0.
As in the previous section Eq. (5.149) is equivalent to the integral equation

Xt = X0 +

∫ t

t0

f(s,Xs)ds+

∫ t

t0

g(s,Xs)dWs on t0 ≤ t ≤ T (5.150)

with components

X i
t = X i

0 +

∫ t

t0

f i(s,Xs)ds+
m∑
j=1

∫ t

t0

gij(s,Xs)dW
j
s , i = 1, . . . , d. (5.151)

The function f in Eq. (5.149) is referred to as the drift coefficient and g is called
the diffusion coefficient. If the drift and diffusion coefficients do not depend on the
variable t, that is, if f(t, x) ≡ f(x) and g(t, x) ≡ g(x), then we say that the stochastic
equation is autonomous.

A solution {Xt}t0≤t≤T of (5.149) must have properties which ensure that the inte-
grals are well defined. The following definition (Mao, 2007) states what we understand
by a solution of Eq. (5.149).
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Definition 5.51. An Rd-valued stochastic process {Xt}t0≤t≤T is called a solution of
Eq. (5.149) if it has the following properties:
(i) {Xt}t0≤t≤T is continuous and Ft-adapted,
(ii) {f(t,Xt)}t0≤t≤T ∈ L1([t0, T ];Rd) and

{g(t,Xt)}t0≤t≤T ∈ L2([t0, T ];Rd×m),
(iii) Eq. (5.149) holds for every t ∈ [t0, T ] with probability 1.
A solution {Xt}t0≤t≤T is said to be unique if any other solution {X̄t}t0≤t≤T is indistin-
guishable from {Xt}t0≤t≤T , that is,

P
(
Xt = X̄t for all t0 ≤ t ≤ T

)
= 1. (5.152)

Example 5.52. In financial mathematics stochastic processes are used to model the
evolution of stock prices. Consider a stock whose price at time t is Xt. Assume a
constant appreciation rate µ ∈ R and suppose that the price fluctuations of the stock
are proportional to the current price of the stock. Then the evolution of the stock
price process is assumed to be described by the linear differential equation (Musiela &
Rutkowski, 2005)

dXt = µXtdt+ σXtdWt, on t0 ≤ t ≤ T, Xt0 = X0, (5.153)

where X0 ∈ R+ is the initial stock price, Wt is a one-dimensional Wiener process and
σ > 0 is a constant volatility coefficient.

Using Itô’s formula one can show that the solution to this stochastic differential
equations is given by

Xt = X0 exp(σWt + (µ− 1

2
σ2)t), t0 ≤ t ≤ T. (5.154)

As with ordinary differential equations, the first question which arises is that of the
existence and uniqueness of solutions to Eq. (5.149). We generally cannot find explicit
formulas like (5.154) for the solutions of stochastic differential equations and need to
use numerical methods to determine the solutions approximately. This is why we need
to know if the equation actually does have a solution for a given initial value and if
this solution is unique.

For an ordinary differential equation

dx

dt
(t) = f(t, x), x(t0) = x0, (5.155)

a sufficient condition (Adkins & Davidson, 2012) for the existence and uniqueness of
a solution is that the function f = f(t, x) is continuous and satisfies the Lipschitz
condition

|f(t, x)− f(t, y)| ≤ K|x− y| (5.156)

for some constant K > 0 and for all (t, x), (t, y) in S := {(t, x) : a ≤ t ≤ b,−∞ <
y <∞}. If (t0, x0) is an interior point of S, then there exists a unique solution to Eq.
(5.155) on the interval [a, b].
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A similar result exists for stochastic differential equations (Kuo, 2006).

Theorem 5.53. Assume that there exists a constant K > 0 such that for all x, y ∈ Rd

and t ∈ [t0, T ]
(i) (Lipschitz condition)

|f(t, x)− f(t, y)|2 ≤ K |x− y|2 , ‖g(t, x)− g(t, y)‖2 ≤ K |x− y|2 , (5.157)

(ii) (Linear growth condition)

|f(t, x)|2 ≤ K(1 + |x|2), ‖g(t, x)‖2 ≤ K(1 + |x|2). (5.158)

Then there exists a unique solution to Eq. (5.149).

5.7 The Stratonovich Integral
The Stratonovich integral is an alternative definition of a stochastic integral introduced
by the Russian physicist R. L. Stratonovich in 1966 (Stratonovich, 1966). Since the
Stratonovich integral is often used in numerical methods for stochastic differential
equations I will briefly explain its construction and difference from the Itô integral in
the remainder of this chapter.

As shown in Kloeden & Platen (1995), the Itô integral
∫ T

0
Xt dWt of a stochastic

process X ∈M2([a, b];R) as defined in (5.35) is equal to the L2-limit of the sums

Sn =
n∑
j=1

X
ξ
(n)
j

(
W
t
(n)
j+1
−W

t
(n)
j

)
, (5.159)

with evaluation points ξ(n)
j = t

(n)
j for partitions 0 = t

(n)
1 < t

(n)
2 < . . . < t

(n)
n+1 = T of the

interval [0, T ] such that

δ(n) = max
1≤j≤n

(
t
(n)
j+1 − t

(n)
j

)
→ 0 as n→∞. (5.160)

The Stratonovich integral is now defined by choosing the midpoint

τ
(n)
j =

1

2
(t

(n)
j + t

(n)
j+1) (5.161)

of each partition subinterval [t
(n)
j , t

(n)
j+1] as the evaluation point in the sum (5.159) instead

of the lower endpoint t(n)
j (Cyganowski et al., 2002).

Definition 5.54 (Stratonovich Integral). Let X ∈M2([a, b];R). The Stratonovich
integral of X with respect to {Wt} is defined as the limit∫ T

0

Xt ◦ dWt := lim
n→∞

n∑
j=1

X
τ
(n)
j

(
W
t
(n)
j+1
−W

t
(n)
j

)
in L2, (5.162)

where τ (n)
j is chosen as in Eq. (5.161).
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The symbol ” ◦ ” before the differential dWt is used here to distinguish between the
Stratonovich integral and the Itô integral. The Stratonovich integral can be extended
to a larger class of integrands in the same way as the Itô integral.

If the Stratonovich integral is used in a stochastic differential equation instead of
the Itô integral, the resulting equation is called a Stratonovich stochastic differential
equation. Stratonovich and Itô stochastic differential equations with the same coeffi-
cients normally do not have the same solution. But, as shown in Kloeden & Platen
(1995), if Xt is the solution of an Itô stochastic differential equation

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs)dWs, (5.163)

then Xt satisfies the modified Stratonovich stochastic differential equation

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs) ◦ dWs, (5.164)

with a modified drift coefficient

a(t, x) = a(t, x)− 1

2
b(t, x)

∂b

∂x
(t, x). (5.165)

Depending on the particular context the Stratonovich integral can be more con-
venient to work with than the Itô integral sometimes. Nevertheless, it is possible to
switch between the two integrals via relation (5.165).

This summary of the Stratonovich integral concludes the introduction to stochastic
differential equations. In the next chapter I will present methods to solve such equations
numerically.



Chapter 6

Numerical Methods for Stochastic
Differential Equations

In this chapter I give an introduction to numerical methods for stochastic differential
equations (SDE). Because most SDEs do not have explicit solutions, we need to use
numerical methods to compute the solutions approximately. Since SDE models find
application in many areas, the development of appropriate numerical schemes is still a
very active research topic.

First, I present the stochastic Taylor expansion which allows the approximation of
a stochastic process in a similar way to the Taylor series for ordinary functions. Then I
show how numerical methods for SDEs can be derived from the Taylor expansions and
present criteria concerning the accuracy of such methods. Finally, I present a Runge-
Kutta type method for SDEs that I used for the numerical simulations of transition-edge
sensors in Chapter 7.

6.1 Stochastic Taylor Expansions
In this section I describe the construction of stochastic Taylor expansions. The stochas-
tic Taylor expansion is the stochastic calculus counterpart to the Taylor series for real-
valued ordinary functions and is based on the iterated application of the Itô formula
(5.47). Many numerical methods for the integration of SDEs are built from stochastic
Taylor expansions.

The following derivation is adapted from Cyganowski et al. (2002). Let
(Ω,F , {Ft}t≥0, P ) be a filtered probability space. Let Xt be the solution of the one-
dimensional SDE in integral form

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs)dWs (6.1)

for t ∈ [t0, T ], where a : [t0, T ] × R → R and b : [t0, T ] × R → R are two measurable
real-valued functions such that {a(t,Xt)}t0≤t≤T ∈ L1([t0, T ];R) and {b(t,Xt)}t0≤t≤T ∈
L2([t0, T ];R). Let f : R × R → R be any twice continuously differentiable function.
Then the Itô formula (5.47) for V (t, x) = f(t, x) gives

f(t,Xt) = f(t0, Xt0) +

∫ t

t0

L0f(s,Xs)ds+

∫ t

t0

L1f(s,Xs)dWs, (6.2)

45
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where we have introduced the operators

L0 :=
∂

∂t
+ a

∂

∂x
+

1

2
b2 ∂

2

∂x2
(6.3)

L1 := b
∂

∂x
. (6.4)

We now apply Eq. (6.2) for different choices of f . For f(t, x) ≡ x we have L0f = a
and L1f = b and Eq. (6.2) recovers to the original SDE

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs)dWs. (6.5)

Choosing f = a in Eq. (6.2) yields

a(t,Xt) = a(t0, Xt0) +

∫ t

t0

L0a(s,Xs)ds+

∫ t

t0

L1a(s,Xs)dWs. (6.6)

Similarly, if we choose f = b, then Eq. (6.2) becomes

b(t,Xt) = b(t0, Xt0) +

∫ t

t0

L0b(s,Xs)ds+

∫ t

t0

L1b(s,Xs)dWs. (6.7)

Substituting Eqs. (6.6) and (6.7) into Eq. (6.5) leads to

Xt = Xt0 +

∫ t

t0

{
a(t0, Xt0) +

∫ s

t0

L0a(z,Xz)dz +

∫ s

t0

L1a(z,Xz)dWz

}
ds (6.8)

+

∫ t

t0

{
b(t0, Xt0) +

∫ s

t0

L0b(z,Xz)dz +

∫ s

t0

L1b(z,Xz)dWz

}
dWs.

Summarizing the four double integrals in Eq. (6.8) into one remainder expression R
we obtain

Xt = Xt0 + a(t0, Xt0)

∫ t

t0

ds+ b(t0, Xt0)

∫ t

t0

dWs +R (6.9)

with remainder

R =

∫ t

t0

∫ s

t0

L0a(z,Xz)dz ds+

∫ t

t0

∫ s

t0

L1a(z,Xz)dWz ds (6.10)

+

∫ t

t0

∫ s

t0

L0b(z,Xz)dz dWs +

∫ t

t0

∫ s

t0

L1b(z,Xz)dWz dWs.

Equation (6.9) is the simplest nontrivial Itô-Taylor expansion of Xt. One can continue
this procedure to replace the integrands in the remainder (6.10) by using Eq. (6.2)
with appropriately chosen functions f . For example, by applying Eq. (6.2) to f = L1b
in the last term of the remainder R we get

Xt = Xt0 + a(t0, Xt0)

∫ t

t0

ds+ b(t0, Xt0)

∫ t

t0

dWs (6.11)

+ L1b(t0, Xt0)

∫ t

t0

∫ s

t0

dWz dWs + R̄,
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with remainder

R̄ =

∫ t

t0

∫ s

t0

L0a(z,Xz)dz ds+

∫ t

t0

∫ s

t0

L1a(z,Xz)dWz ds (6.12)

+

∫ t

t0

∫ s

t0

L0b(z,Xz)dz dWs +

∫ t

t0

∫ s

t0

∫ z

t0

L0L1b(u,Xu)du dWz dWs

+

∫ t

t0

∫ s

t0

∫ z

t0

L1L1b(u,Xu)dWu dWz dWs. (6.13)

By using this substitution repeatedly we obtain constant integrands in higher and
higher order terms. This way we get an expansion for Xt that involves multiple Itô
integrals multiplied by certain constants and a remainder R containing the next mul-
tiple Itô integrals with non-constant integrands. We can now use the stochastic Taylor
expansion to design numerical methods for SDEs. By applying Taylor expansions of
the form (6.9) or (6.11) over successive subintervals of the interval of integration [t0, T ]
while neglecting the remainder terms, we can gradually construct an approximation of
the solution Xt of the SDE (6.1).

6.2 The Euler-Maruyama Method
The Euler-Maruyama method (Maruyama, 1955) is one of the simplest methods for
the approximate numerical solution of SDEs. The method is obtained by truncating
the stochastic Taylor expansion after the first order terms. As in the previous section
let Xt be the solution of the SDE

dXt = a(t,Xt)dt+ b(t,Xt)dWt (6.14)

on t0 ≤ t ≤ T with the initial value Xt0 = X0.
Let t0 = τ0 < τ1 < . . . < τn < . . . < τN = T be a discretization of the time interval

[t0, T ]. Then the Euler-Maruyama approximation is a continuous stochastic process
Y = {Yt}t0≤t≤T that satisfies the iterative scheme (Kloeden & Platen, 1995)

Y0 = X0, (6.15)
Yn+1 = Yn + a(τn, Yn)∆n + b(τn, Yn)∆Wn,

for n = 0, 1, 2, . . . , N − 1, where Yn := Yτn denotes the value of the approximation at
the discretization time τn,

∆n =

∫ τn+1

τn

dt = τn+1 − τn (6.16)

is the length of the time discretization subinterval [τn, τn+1] and

∆Wn =

∫ τn+1

τn

dWt = Wτn+1 −Wτn . (6.17)

When the diffusion coefficient is zero, i.e., b ≡ 0, the iterative scheme (6.15) is identical
to the Euler scheme for ordinary differential equations.
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Fig. 6.1: Linearly interpolated sample path of a time discrete Wiener process over the time
interval [0, 1].

The Euler-Maruyama scheme (6.15) gives the values of the approximating process
Y only at the discretization times τn. The values of Y at intermediate times can be
computed by appropriate interpolation methods if required. For example, one can use
linear interpolation, as suggested by Platen & Bruti-Liberati (2010), given by

Yt = Ynt +
t− τnt

τnt+1 − τnt
(Ynt+1 − Ynt), (6.18)

where
nt = max{n = 0, 1, . . . , N : τn ≤ t}. (6.19)

We can now compute the approximating sequence {Yn, n = 0, 1, . . . , N} recursively,
similar to numerical methods for ordinary differential equations. The only difference is
that we need to generate the increments ∆Wn of the Wiener process Wt for each time
step. From the definition of the Wiener process (5.22) we know that the process starts
at zero and that the increments are independent and normally distributed with mean
zero and variance ∆n. In practice one can use a pseudo-random number generator to
compute a sequence of independent random numbers with these properties numerically.
For this thesis I use the function gsl_ran_gaussian of the GNU Scientific Library by
Galassi et al. (2009). More details about the algorithm can be found in L’Ecuyer
(1996). This way we can generate a time discrete sample path of a Wiener process
recursively by

W0 = 0, (6.20)
Wn+1 = Wn + ∆Wn,

for n = 0, 1, 2, . . . , N − 1, where Wn := Wτn denotes the value of the Wiener process
at the discretization time τn and ∆Wn ∼ N(0,∆n). A linearly interpolated sample
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path of a Wiener process that I generated with this method over the interval [0, 1] at
equidistant discretization times τn = n2−9 for n = 0, 1, . . . , 29 is shown in Fig. 6.1.

Example 6.1. To illustrate the outcome of the Euler-Maruyama method I applied the
scheme to the SDE from Example (5.52)

dXt = µXtdt+ σXtdWt, (6.21)

for t ∈ [0, T ] with initial value Xt0 = X0 ∈ R. From Example (5.52) we know that the
SDE (6.21) has the explicit solution

Xt = X0 exp(σWt + (µ− 1

2
σ2)t), (6.22)

for t ∈ [0, T ] and the given Wiener process W = {Wt}t≥0. This way we can compare
the Euler approximation with the exact solution and also calculate the errors.

Applying the Euler-Maruyama scheme (6.15) to the SDE (6.21) yields the iterative
scheme

Y0 = X0, (6.23)
Yn+1 = Yn + µYn∆n + σYn∆Wn,

for n = 0, 1, 2, . . ., and ∆Wn ∼ N(0,∆n). The corresponding values of the exact
solution for the same sample path of the Wiener process are given by

Xτn = X0 exp(σ
n∑
i=1

∆Wi−1 + (µ− 1

2
σ2)τn). (6.24)

I implemented the Euler-Maruyama method as a program in the S-Lang programming
language, executed within the Interactive Spectral Interpretation System (ISIS) (Houck
& Denicola, 2000). The black lines in Fig. 6.2 show a linearly interpolated plot of the
exact solution of SDE (6.21) for X0 = 1, µ = 2, and σ = 1, corresponding to the
sample path of the Wiener process from Fig. 6.1. The red lines show the result of the
Euler-Maruyama approximation for an equidistant step size of ∆n = 2−4 and ∆n = 2−6.

Example (6.1) clearly shows that the quality of the approximation Y improves for
the smaller step size. If we repeat the simulation with smaller step sizes, we expect
the approximation to be even closer to the exact solution X. It looks like some kind
of convergence is taking place. A measure for the quality of the approximation used in
the context of SDEs is the absolute error defined as (Kloeden et al., 1994)

ε = E(|XT − YT |). (6.25)

That is, the absolute error is the expectation of the absolute value of the difference
between the exact solution and the approximation at the end time T . There are now
two types of convergence that are used to describe the accuracy of stochastic numerical
schemes. The first is strong convergence and the second is weak convergence (Kloeden
et al., 1994).
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∆ = 2−4
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Fig. 6.2: Euler-Maruyama method applied to the SDE (6.21) for X0 = 1, µ = 2, and σ = 1
over the time interval [0, 1]. The red lines show the resulting approximations for different step
sizes. For comparison, the exact solution is shown in black.

Definition 6.2. Let Iδ = {τ0, τ1, . . . , τN} with t0 = τ0 < τ1 < . . . < τN = T be a
discretization of the time interval [t0, T ]. Denote by δ the maximum step size of the
discretization. We say that a time discrete approximation Y = {Yt}t∈Iδ
(i) converges strongly with order γ > 0 at time T to the solution X of a given SDE

if there exists a positive constant C, which does not depend on δ, and a δ0 > 0
such that

ε(δ) = E (‖XT − YT‖) ≤ Cδγ (6.26)

for each δ ∈ (0, δ0).
(ii) converges weakly with order β > 0 at time T to the solution X of a given SDE

if for each polynomial g : Rd → R there exists a constant C > 0, which does not
depend on δ, and a δ0 > 0 such that

|E(g(XT ))− E(g(YT ))| ≤ Cδβ (6.27)

for each δ ∈ (0, δ0).

The strong convergence of a numerical scheme is of interest when a good pathwise
approximation is required, for example in direct simulations. This is also the type of
convergence I am interested in because I want to directly simulate the resulting current
and temperature response of the transition-edge sensor to an absorption event.

The weak convergence is of interest when we want to approximate the expectations
of functionals of Itô processes. This is the case when one is not interested in the direct
simulations but only in the statistical properties of the solution such as its probability
distribution or its moments.



6.3. HIGHER ORDER NUMERICAL METHODS 51

For example, the Euler-Maruyama approximation has strong order of convergence
γ = 0.5 and weak order of convergence β = 1 Kloeden & Platen (1995). Although the
method is simple to implement, the order of convergence is still very low. To obtain
higher-order methods one can add further terms of the stochastic Taylor expansion to
the approximation.

6.3 Higher Order Numerical Methods
In this section I present the construction of higher order numerical methods for general
d-dimensional SDEs. Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space and let
I = [t0, T ] for some 0 ≤ t0 < T < ∞. Denote by X = {Xt}t∈I the solution of the
d-dimensional SDE system

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs)dWs on t0 ≤ t ≤ T, (6.28)

with initial value Xt0 ∈ L2(Ω,Rd), where {Wt = (W 1
t , . . . ,W

m
t )T}t≥0 is an

m-dimensional Wiener process defined on the space for m ≥ 1. Suppose that
a : I × Rd → Rd and b : I × Rd → Rd×m are two continuous functions that satisfy the
Lipschitz and linear growth condition from theorem (5.53) to ensure the existence and
uniqueness of the solution. The k-th component of Eq. (6.28) is

Xk
t = Xk

t0
+

∫ t

t0

ak(s,Xs)ds+
m∑
j=1

∫ t

t0

bk,j(s,Xs)dW
j
s , (6.29)

where ak denotes the k-th component of the d-dimensional vector valued function a
and bk,j denotes the (k, j)-th component of the d×m-matrix valued function b = (bk,j).
Let t0 = τ0 < τ1 < . . . < τN = T be a discretization of the interval [t0, T ] with step
sizes ∆n = τn+1 − τn for n = 0, 1, . . . , N − 1.

To simplify the representation of the multiple Itô and Stratonovic integrals as well as
the derivatives that will occur in these schemes I use the compact notation introduced
by Kloeden & Platen (1995) for this section.

For the operators that were introduced for the stochastic Taylor expansion at the
beginning of this chapter we will use the generalizations

L0 =
∂

∂t
+

d∑
k=1

ak
∂

∂xk
+

1

2

d∑
k,l=1

m∑
j=1

bk,jbl,j
∂2

∂xk∂xl
, (6.30)

L0 =
∂

∂t
+

d∑
k=1

ak
∂

∂xk
, (6.31)

and

Lj = Lj =
d∑

k=1

bk,j
∂

∂xk
, (6.32)

for j = 1, 2, . . . ,m, where

ak = ak − 1

2

m∑
j=1

Ljbk,j, (6.33)
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for k = 1, 2, . . . , d. Additionally, we will abbreviate multiple Itô integrals by

I(j1,...,jl)[τn, τn+1] :=

∫ τn+1

τn

· · ·
∫ s2

τn

dW j1
s1
· · · dW jl

sl
(6.34)

and multiple Stratonovich integrals by

J(j1,...,jl)[τn, τn+1] :=

∫ τn+1

τn

· · ·
∫ s2

τn

◦dW j1
s1
· · · ◦ dW jl

sl
, (6.35)

for a multi-index α = (j1, j2, . . . , jl) ∈ {0, 1, . . . ,m}l with the convention that

W 0
t = t, (6.36)

for all t ≥ 0. In the remainder of this section I will use the abbreviation

f = f(τn, Yn), (6.37)

for n = 0, 1, 2, . . ., in the numerical schemes for any function f defined on R+ × Rd.
One can construct stochastic Taylor expansions for d-dimensional Itô processes in

a similar way as shown at the beginning of this chapter for the one dimensional case.
The derivation of a general stochastic Taylor expansion for the multi dimensional case
is shown in Kloeden & Platen (1995). The main difference to the one dimensional case
is that there will occur multiple stochastic integrals of the form (6.34) and (6.35) as
well as multiple derivatives of the form (6.30)–(6.33) in such expansions.

We can then construct numerical methods with higher order of convergence for
general d-dimensional SDEs as Eq. (6.28) by including appropriately many terms of
this general stochastic Taylor expansion. For example, by adding one more term to
the Euler-Maruyama scheme (6.15) one obtains the Milstein scheme. For the general
multi-dimensional case with d,m ≥ 1, the k-th component of the Milstein scheme is
given by (Kloeden & Platen, 1995)

Y k
n+1 = Y k

n + ak∆n +
m∑
j=1

bk,j∆W j
n +

m∑
j1,j2=1

Lj1bk,j2I(j1,j2)[τn, τn+1], (6.38)

for n = 0, 1, . . . , N − 1. Alternatively, if multiple Stratonovich integrals are used, the
Milstein scheme has the form

Y k
n+1 = Y k

n + ak∆n +
m∑
j=1

bk,j∆W j
n +

m∑
j1,j2=1

Lj1bk,j2J(j1,j2)[τn, τn+1], (6.39)

for n = 0, 1, . . . , N − 1. The Milstein scheme has strong order of convergence γ = 1.0
under certain conditions on the functions a and b (Kloeden & Platen, 1995).

We immediately see another problem that arises for higher order numerical methods
like the Milstein scheme. For the implementation of the scheme we need to calculate the
multiple stochastic integrals I(j1,j1)[τn, τn+1] and J(j1,j1)[τn, τn+1] in the approximations
(6.38) and (6.39). When j1 = j2 we can apply the Itô formula to obtain (Kloeden &
Platen, 1995)

I(j1,j1)[τn, τn+1] =
1

2

{(
∆W j1

n

)2 −∆n

}
and J(j1,j1)[τn, τn+1] =

1

2

(
∆W j1

n

)2
. (6.40)
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However, when j1 6= j2 we cannot write the multiple integrals I(j1,j2)[τn, τn+1] and
J(j1,j2)[τn, τn+1] just in terms of the increments ∆W j1

n and ∆W j2
n . Nevertheless, for the

implementation of a scheme that requires the computation of such integrals one can
approximate them numerically instead. In the next section I describe a method for the
approximation of such multiple stochastic integrals based on a random Fourier series
expansion.

6.4 Approximation of Multiple Stochastic Integrals
In this section I present a method to approximate multiple stochastic Integrals numeri-
cally as proposed by Kloeden & Platen (1995). The method is based on the component
wise Fourier expansion of a Brownian bridge process.

A Brownian bridge process {Bt}0≤t≤T is a modification of anm-dimensional Wiener
process Wt = (W 1

t , . . . ,W
m
t ) defined by (Kloeden & Platen, 1995)

Bt = x+Wt −
t

T
{WT − y + x} , (6.41)

for 0 ≤ t ≤ T and x, y ∈ Rd. The Brownian bridge process satisfies the constraints
B0 = x and BT = y, i.e., all sample paths of the process pass through the same initial
point x and end point y.

In this section we will work with a Brownian bridge process that starts at x = 0
and ends at y = 0 on the time interval [0,∆] with ∆ > 0, i.e.,{

Wt −
t

∆
W∆

}
0≤t≤∆

. (6.42)

As shown in Kloeden & Platen (1995) the j-th component of the Fourier expansion of
this process has the form

W j
t −

t

∆
W j

∆ =
1

2
aj,0 +

∞∑
r=1

(
aj,r cos

(
2rπt

∆

)
+ bj,r sin

(
2rπt

∆

))
(6.43)

with random coefficients

aj,r =
2

∆

∫ ∆

0

(
W j
s −

s

∆
W j

∆

)
cos

(
2rπs

∆

)
ds, (6.44)

bj,r =
2

∆

∫ ∆

0

(
W j
s −

s

∆
W j

∆

)
sin

(
2rπs

∆

)
ds, (6.45)

for r = 0, 1, 2, . . ., and j = 1, . . . ,m. One can show that the coefficients aj,r and bj,r are
N(0,∆/2π2r2) distributed random variables (Kloeden & Platen, 1995). By truncating
the series (6.43) we obtain an approximation

W j,p
t =

t

∆
W j

∆ +
1

2
aj,0 +

p∑
r=1

(
aj,r cos

(
2rπt

∆

)
+ bj,r sin

(
2rπt

∆

))
, (6.46)

for each p ∈ N. The process (6.46) has differentiable sample paths on the time interval
[0,∆] and one can show that Riemann-Stieltjes integrals with respect to such a process
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converge to Stratonovich stochastic integrals (Kloeden & Platen, 1995). Thus, we can
use such integrals to approximate multiple Stratonovich integrals J(j1,...,jl)[0, t]. Denote
by

Jp(j1,j2,...,jl)[0, t] =

∫ t

0

∫ sl

0

· · ·
∫ s2

0

dW j1,p
s1

dW j2,p
s2

. . . dW jl,p
sl

(6.47)

the corresponding Riemann-Stieltjes integrals. I will omit the lengthy derivations here
and just present the resulting approximations. A detailed derivation of the approx-
imations as well as more details on this subject can be found in Kloeden & Platen
(1995).

We define for all j = 1, . . . ,m and r = 1, . . . , p with p ∈ N random variables ξj, ζj,r,
ηj,r, µj, p and φj,p, which are independent and normally distributed with mean zero
and variance one, by

ξj =
1√
∆
W j

∆, ζj,r =

√
2

∆
πraj,r, ηj,r =

√
2

∆
πrbj,r, (6.48)

µj,p =
1√
∆ρp

∞∑
r=p+1

aj,r, Φj,p =
1√
∆αρ

∞∑
r=p+1

1

r
bj,r,

where

ρp =
1

12
− 1

2π2

p∑
r=1

1

r2
and αp =

π2

180
− 1

2π2

p∑
r=1

1

r4
. (6.49)

With these random variables we can approximate a multiple Stratonovich integral
J(j1,...,jl)[0,∆] by Jp(j1,...,jl)[0,∆] for p ∈ N as described below. To simplify the notation
I will omit the argument [0,∆] from the Jpα from now on. For j, j1, j2, j3 ∈ {1, . . . ,m}
we have

Jp(0) = ∆, Jp(j) =
√

∆ξj, (6.50)

Jp(0,0) =
1

2
∆2, Jp(j,0) =

1

2
∆
(√

∆ξj + aj,0

)
, Jp(0,j) =

1

2
∆
(√

∆ξj − a(j,0)

)
, (6.51)

where

aj,0 = −2
√

∆ρpµj,p −
1

π

√
2∆

p∑
r=1

1

r
ζj,r, (6.52)

and

Jp(j1,j2) =
1

2
∆ξj1ξj2 −

1

2

√
∆ (aj2,0ξj1 − aj1,0ξj2) + ∆Apj1,j2 , (6.53)

with

Apj1,j2 =
1

2π

p∑
r=1

1

r
(ζj1,rηj2,r − ηj1,rζj2,r) . (6.54)
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Triple Stratonovich integrals can be approximated by

Jp(0,0,0) =
1

3!
∆3, (6.55)

Jp(0,j,0) =
1

3!
∆5/2ξj −

1

π
∆2bj, (6.56)

Jp(j,0,0) =
1

3!
∆5/2ξj +

1

4
∆2aj,0 +

1

2π
∆2bj, (6.57)

Jp(0,0,j) =
1

3!
∆5/2ξj −

1

4
∆2aj,0 +

1

2π
∆2bj, (6.58)

with

bj =
√

∆αpΦj,p +

√
∆

2

p∑
r=1

1

r2
ηj,r, (6.59)

Jp(j1,0,j2) =
1

3!
∆2ξj1ξj2 +

1

2
aj1,0J

p
(0,j2) +

1

2π
∆3/2ξj2bj1 (6.60)

−∆2Bp
j1,j2
− 1

4
∆3/2aj2,0ξj1 +

1

2π
∆3/2ξj1bj2 ,

Jp(0,j1,j2) =
1

3!
∆2ξj1ξj2 −

1

π
∆3/2ξj2bj1 + ∆2Bp

j1,j2
(6.61)

− 1

4
∆3/2aj2,0ξj1 +

1

2π
∆3/2ξj1bj2 + ∆2Cp

j1,j2
+

1

2
∆2Apj1,j2 ,

with

Bp
j1,j2

=
1

4π2

p∑
r=1

1

r2
(ζj1,rζj2,r + ηj1,rηj2,r) , (6.62)

and

Cp
j1,j2

= − 1

2π2

p∑
r,l=1
r 6=l

r

r2 − l2

(
1

l
ζj1,rζj2,l −

l

r
ηj1,rηj2,l

)
, (6.63)

Jp(j1,j2,0) =
1

2
∆2ξj1ξj2 −

1

2
∆3,2 (aj2,0ξj1 − aj1,0ξj2) (6.64)

+ ∆2Apj1,j2 − J
p
(j1,0,j2) − J

p
(0,j1,j2),

Jp(j1,j2,j3) =
1√
∆
ξj1J

p
(0,j2,j3) +

1

2
aj1,0J

p
(j2,j3) +

1

2π
∆bj1ξj2ξj3 (6.65)

−∆3/2ξj2B
p
j1,j3

+ ∆3/2ξj3

(
1

2
Apj1,j2 − C

p
j2,j1

)
+ ∆3/2Dp

j1,j2,j3
,
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with

Dp
j1,j2,j3

=− 1

π225/2

p∑
r,l=1

1

l(l + r)

[
ζj2,l(ζj3,l+rηj1,r − ζj1,rηj1,l+r)

+ ηj2,l(ζj1,rζj3,l+r + ηj1,rηj3,l+r)

] (6.66)

+
1

π225/2

p∑
l=2

l−1∑
r=1

1

r(l − r)

[
ζj2,l(ζj1,rηj3,l−r + ζj3,l−rηj1,r)

− ηj2,l(ζj1,rζj3,l−r − ηj1,rηj3,l−r)
]

+
1

π225/2

p∑
l=1

2p∑
r=l+r

1

r(r − l)

[
ζj2,l(ζj3,r−lηj1,r − ζj1,rηj3,r−l)

+ ηj2,l(ζj1,rζj3,r−l + ηj1,rηj3,r−l)

],

where we set ζj,r = 0 and ηj,r = 0 for r > p. Kloeden & Platen (1995) show that
mean-square error of the above approximations for multi-indices α = (j1, j2, j3) ∈
{0, 1, . . . ,m}3 is given by

E
(∣∣Jpα − Jα∣∣2) ≤ ∆2%p, (6.67)

where

%p =
1

2π2

∞∑
r=p+1

1

r2
. (6.68)

This inequality allows us to estimate the quality of our approximations and to calculate
an upper bound for the error. For the implementation of the above approximation
one can again use random number generators to generate realizations of the random
variables (6.48).

We can approximate multiple Itô integrals in a similar way by using the following
correlations between Itô and Stratonovich integrals (Kloeden & Platen, 1995). For j1,
j2, j3 ∈ {0, 1, . . . ,m} we have

I(j1) = Jj1 (6.69)

I(j1,j2) = J(j1,j2) −
1

2
I{j1=j2 6=0}∆ (6.70)

I(j1,j2,j3) = J(j1,j2,j3) −
1

2
I{j1=j2 6=0}J(0,j3) −

1

2
I{j2=j3 6=0}J(j1,0), (6.71)

where IA denotes of indicator function which equals 1 if A is true and 0 otherwise.
Additionally, for the implementation of the above approximations in numerical schemes
we can use the following relations between multiple Itô integrals to save computation
time. For j ∈ {1, . . . ,m} and ∆W j := W j

∆ −W
j
0 we have (Kloeden & Platen, 1995)

I(j,j) =
1

2

(
(∆W j)2 −∆

)
, (6.72)

I(j,j,j) =
1

3!

(
(∆W j)2 − 3∆

)
∆W j, (6.73)

∆W j∆ = I(j,0) + I(0,j). (6.74)
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That is, we can compute the double and triple Itô integrals I(j,j) and I(j,j,j) directly
from the Wiener increments. The double integral I(j,0) can easily be computed from
I(j,0) and vice versa.

In this section I explained how the multiple stochastic integrals in higher order
numerical schemes can be approximated numerically. By including more terms of the
general stochastic Taylor expansion one can construct even higher order numerical
methods for SDEs. However, a disadvantage of such Taylor-expansion methods is that
the partial derivatives of various orders of the drift and diffusion coefficients must be
calculated first and then evaluated at each time step. Depending on the SDE system
one is working with this fact can make the implementation of such a method very
impractical. There are however numerical methods for the strong approximation of
SDEs that do not use the derivatives of the drift and diffusion coefficients, similar to
Runge-Kutta schemes for ordinary differential equations. In the next section I will
present such a Runge-Kutta method for SDEs that has strong order of convergence
1.5.

6.5 Runge-Kutta Methods
In this section we consider numerical methods for SDEs which avoid the use of deriva-
tives, similar to Runge-Kutta schemes for ordinary differential equations. We will also
call them Runge-Kutta schemes in analogy to the deterministic case. I will continue
to use the abbreviations and notations introduced in the last section.

Stochastic Runge-Kutta schemes are obtained from the Taylor-expansion methods
by replacing the derivatives with finite differences expressed in terms of appropriate
supporting values. Below, I present a Runge-Kutta approximation for autonomous
SDEs from Platen & Bruti-Liberati (2010) with strong order of convergence 1.5. For
general multi-dimensional autonomous SDEs (6.28) with d, m ≥ 1, the k-th component
of the scheme satisfies

Y k
n+1 =Y k

n + ak(Yn)∆n +
m∑
j=1

bk,j(Yn)∆W j
n (6.75)

+
1

2
√

∆n

m∑
j2=0

m∑
j1=1

{
bk,j2

(
Ῡj1

+

)
− bk,j2

(
Ῡj1
−
)}
I(j1,j2)[τn, τn+1]

+
1

2∆n

m∑
j2=0

m∑
j1=1

{
bk,j2

(
Ῡj1

+

)
− 2bk,j2 + bk,j2

(
Ῡj1
−
)}
I(0,j2)[τn, τn+1]
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with the supporting values

Ῡj
± = Yn +

1

m
a(Yn)∆n ± bj(Yn)

√
∆n, (6.76)

Φ̄j1,j2
± = Ῡj1

+ ± bj2
(
Ῡj1

+

)√
∆n, (6.77)
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Fig. 6.3: Result of the Runge-Kutta method (6.75) applied to the SDE system (6.78) with
constant step size ∆ = 2−8 over the time interval [0, 2].

where we set bk,0 := ak. The multiple Itô integrals in this scheme can be approximated
as described in Sect. 6.4. This Runge-Kutta method is also the method that I used
for the numerical simulations of transition-edge sensors in Chapter 7. I implemented
the above scheme in the C programming language. To illustrate and verify the output
of my program I applied it to a simple two-dimensional SDE system that also has an
explicit solution.

Example 6.3. In this example I apply the Runge-Kutta method (6.75) to a simple
SDE system and compare the resulting approximation to the exact solution. Consider
the system of two coupled autonomous SDEs

dX1
t = −3

2
X1
t dt+X1

t dW
1
t −X1

t dW
2
t −X2

t dW
3
t , (6.78)

dX2
t = −3

2
X2
t dt+X2

t dW
1
t −X2

t dW
2
t +X1

t dW
3
t

for t ∈ [0, 2] with initial value (X1
0 , X

2
0 ) = (1, 0) and three independent Wiener processes

W 1,W 2, andW 3. As shown in Wilkie (2004), this SDE system has the explicit solution

X1
t = exp{−2t+W 1

t −W 2
t } cosW 3

t , (6.79)
X2
t = exp{−2t+W 1

t −W 2
t } sinW 3

t , (6.80)

for t ∈ [0, 2]. In order to apply the method to this system I first generated sample
paths of three time discrete Wiener processes over the time interval [0, 2] as in (6.20)
with constant step sizes ∆ = 2−9. Figure 6.3 shows the result of the Runge-Kutta
method (6.75) applied to the SDE system (6.78) with constant step size ∆ = 2−8 over
the time interval [0, 2], corresponding to the previously generated Wiener processes.
The approximation Y 1

t to the first component X1
t of the solution is shown in blue and

the approximation Y 2
t to the second component X2

t of the solution is shown in red.
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Figures 6.4 and 6.5 show the Runge-Kutta approximations for different step sizes
and the exact solution (6.79) corresponding to the three generated Wiener processes
for comparison. We can see that the quality of the approximation improves for smaller
step sizes and that my implementation of the method is working fine.

I have written my program in such a way that it can be applied to any autonomous
multi dimensional system of SDEs with any number of noise terms. The next step to
obtain numerical simulations of transition-edge sensors is now to model the noise in a
TES in the framework of stochastic differential equations. Then I use my program to
solve the resulting SDE system numerically.
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Chapter 7

Simulation of Transition-Edge Sensors

In this chapter I present my results of the numerical simulation of TES based mi-
crocalorimeters using the stochastic Runge-Kutta scheme from Chapter 6. The sim-
ulations include the main noise processes that exist in the detector as described in
Chapter 4. First, I describe the noise models used for the simulations and how they
are treated in the framework of stochastic differential equations. Then I present the
results of my simulations. Finally, I compare my results to the simulations done before
with the fourth order Runge-Kutta method for ordinary differential equations.

7.1 Noise Models
To model the Johnson noise from the resistors I follow the approach by Gillespie (1996),
Demir (1997) and Allison & Abbot (2005). In these articles, Johnson noise from
resistors is modeled as an additional voltage or current source using Nyquist’s theorem.
The following text is a brief summary of this method. For more details see the cited
articles.

Shortly after the thermal fluctuations in resistors were observed by John B. Johnson,
Harry Nyquist was the first who derived a physical description of this effect in 1928
(Nyquist, 1928). Nyquist’s theorem states that the fluctuations in current from a
resistor having resistanceR at temperature T can be modeled as a wide-sense stationary
stochastic process with spectral density given by

Sin(f) =
2kbT

R
, (7.1)

where kb = 1.38 × 10−23 JK−1 is the Boltzmann constant. The spectral density is
constant, i.e., this is the spectral density of a white noise process. As a consequence
of the central limit theorem, the thermal noise of a resistor is accurately modeled by a
Gaussian process. This means, we can use the formal derivative of the Wiener process
as a model for the thermal noise of a resistor.

Based on Nyquist’s theorem a noisy resistor can then be modeled as a noise free
resistor with the same resistance R in parallel with a noise current source in that
represents a wide-sense stationary white Gaussian stochastic process whose spectral
density is given by Eq. (7.1). This model is called the Norton equivalent model for the
noisy resistor.

61
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R

(a) Resistor at temperature T

Noiseless resistorin

(b) Norton equivalent model

vn

Noiseless resistor

(c) Thevenin equivalent model

Fig. 7.1: The noisy resistor at temperature T in figure (a) can be modeled as a noiseless
resistor in parallel with a noise-creating current source or in series with a noise-creating voltage
source. All three circuits are equivalent.

Alternatively, the noisy resistor can also be modeled as a noise free resistor in series
with a noise voltage source vn whose spectral density is given by

Svn(f) = 2kbTR. (7.2)

This model is called the Thevenin equivalent model for the noisy resistor. An illustra-
tion of the two equivalent circuits describing a noisy resistor is shown in Fig. 7.1.

Using this approach we can model the Johnson noise from the resistors in the bias
circuit (Fig. 4.3) of our detector as two additional noise voltage sources in series with
the load resistor RL and the TES. The resulting circuit is shown in Fig. 7.2.

The voltage across the TES is now given by

V (t) = I(t)R(T (t), I(t)) + vdn(t), (7.3)

which leads to additional Joule heating from the noisy voltage source vdn. By including
this Joule heating and applying Kirchhoff’s voltage law we get the new thermal and
electrical circuit equations

C
dT (t)

dt
= −Pb(T, Tb) +R(T, I)I2 + Pin + Ivdn(t), (7.4)

L
dI(t)

dt
= V − IRL − IRTES(T, I) + vcn(t) + vdn(t), (7.5)

V

RL
vcn

RTES

vdn

L

Fig. 7.2: Illustration of the new bias circuit including the Johnson noise from the resistors.
The Johnson noise is modeled as two additional noise voltage sources in series with the load
resistor and the TES. The first voltage source, named vdn, models the noise in the detector
from the TES and the second voltage source vcn models the noise in the circuit from the load
resistor.
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with initial conditions T (0) = T0 and I(0) = I0.
The thermal fluctuation noise across the weak thermal link between the TES and

the cold bath is modeled as an additional fluctuating power source in the thermal
equation (7.4). Like the Johnson noise, we assume that the thermal fluctuation noise
can be modeled as a Gaussian process. As discussed in Irwin & Hilton (2005) the
spectral density of the thermal fluctuation noise is given by

SPTFN
(f) = 2kbT

2
0Gbath. (7.6)

That is, the TFN is also a white noise process. Here I use a factor of 2 instead of 4
as in Irwin & Hilton (2005) to be consistent with the previous definition of spectral
density.

As discussed above, the noise voltages must be of the form

vn(t) =
√

2kbTRξ(t), (7.7)

where ξ(t) is a Gaussian white noise process, i.e., the formal derivative of a Wiener
process. Then the spectral density of this process is given by Eq. (7.2). Similarly, the
TFN must be of the form

PTFN(t) =
√

2kbT 2
0Gbathξ(t). (7.8)

Including the TFN in the thermal equation and using the notation of stochastic differ-
ential equations yields the SDE system

dTt = C−1(−Pb(Tt, Tb) +RTES(Tt, It)I
2
t + Pin)dt (7.9)

+ C−1It
√

2kbTtR(Tt, It)dW
2
t + C−1

√
2kbT 2

t GbathdW
3
t

dIt = L−1(V − ItRL − ItRTES(Tt, It))dt (7.10)

+ L−1
√

2kbTbRLdW
1
t + L−1

√
2kbTtR(Tt, It)dW

2
t ,

on t0 ≤ t ≤ tend with initial conditions Tt0 = T0, It0 = I0 and three independent Wiener
processes {W 1

t }t0≤t≤tend , {W 2
t }t0≤t≤tend , {W 3

t }t0≤t≤tend . This is the system of stochastic
differential equations that I will use for the numerical simulations in the next section.

7.2 Simulation Results
For the simulations I implemented the SDE system (7.9–7.10) and my stochastic Runge-
Kutta program from Chapter 6 in the tessim software tool within the SIXTE frame-
work. Table 7.1 shows the parameters of the simulated transition-edge sensor. These
parameters are stored in a FITS file which is read in during runtime. The photon ener-
gies and their arrival times are stored in an additional FITS file. The output generated
by tessim is a FITS file that contains the current values calculated at the sampling
times.

Figure 7.3 shows the resulting current pulses of my simulations for different photon
energies with constant step size ∆ = 6.4 × 10−6 seconds. As expected, the current
drops when a photon hits the pixel and then recovers back to the steady state value.
The higher the photon energy, the larger is the resulting current drop.
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Fig. 7.3: Simulated current pulses for different photon energies.
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Table 7.1: The parameters of the simulated TES pixel. The additional parameters Rpara,
TTR, and Lfilter are used to calculate the resistance, inductance, and bias voltage of the
TES inside tessim.

Parameter Symbol Value Explanation
sample_rate 156250 Sample rate [Hz]
delta_t ∆ 6.4 Step size [µs]
T_start T0 90.0 Initial temperature [mK]
I0 I0 51.53332 Initial current [µA]
Ce1 C 0.8 Heat capacity [pJ/K]
Gb1 Gbath 114.7 Bath thermal conductance [pW/K]
Tb Tb 55 Bath temperature [mK]
n n 3 Thermal exponent
alpha α 75 TES sensitivity
beta β 1.25 TES current dependence
R0 1.0 Operating point resistance [mΩ]
Rpara 1.0 Parasitic resistor value [mΩ]
TTR 4.08 Transformer Turns Ratio
Lfilter 2 Filter inductance [µH]

So the stochastic integrator and the implementation are working fine. However, an-
other question that remains to study is how the new results differ from the simulations
done before with tessim. As mentioned in Chapter 3, tessim used a standard fourth
order Runge-Kutta method to solve the system of differential equations describing the
TES, consisting of Eqs. (4.2) and (4.9). The noise was simulated by adding appro-
priately scaled random numbers to these differential equations before each integration
step. This method is mathematically incorrect, but nevertheless yields very reasonable
results. So in the remainder of this chapter I will compare the results of both methods.

Figure 7.4 shows a current pulse obtained with the new integrator and a pulse that
is generated with the old code for comparison. We can see that there is not much
difference at all between the two pulses. Especially at higher energies the difference
is barely visible. To further study the difference between the two methods I also did
simulations without noise. The difference between the two solutions obtained this way
is shown in Fig. 7.5. The difference is minimal and probably due to the higher order of
convergence of the deterministic Runge-Kutta method. This fact could be improved,
e.g., by implementing an adaptive step size control for future simulations.

Additionally, I did simulations where I increased the intensity of the noise in both
methods by 500 percent. The idea was to investigate if the solutions might deviate from
each other for such high noise intensities. However, as the plots in Fig. 7.5 indicate the
solutions are still very similar, although the noise seems to be slightly more pronounced
for the new method.

The above considerations suggest that the two methods indeed yield very similar
results despite the mathematical deficiency of the old approach. In the next section I
calculate the noise spectra of a 30 second simulation of just noise using methods from
spectral analysis. Perhaps there might be a prominent difference visible between the
two methods in their spectra.
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Fig. 7.4: Comparison between the two simulation methods. Shown in red is the solution
obtained with the stochastic Runge-Kutta method applied to the SDE system and shown in
blue is the result generated with the old method. Top: Photon energy: 0.1 keV. Bottom:
Photon energy: 1 keV.
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Fig. 7.5: Top: The difference between the new simulation result, denoted by Isde, and the
old result, denoted by Iode, of a simulation without noise for a photon energy of 0.1 keV.
Bottom: Current pulses with noise increased by 500 percent.
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7.3 Spectral Analysis
In this section I use tools from spectral analysis to compare the noise spectrum of the
new simulations with the noise spectrum of the simulations done before and also with
theoretical predictions by Irwin & Hilton (2005). First, I give a short introduction
to the techniques and concepts of spectral analysis that I will use later in this section
such as the discrete Fourier transform and power spectral densities. Then I present and
compare the resulting spectra. The following text is based on Stoica & Moses (2015).
A thorough introduction to the spectral analysis of signals can be found in this book.

As already shown in Def. 5.26, the spectral density of a signal is defined as the
Fourier transform of its autocorrelation function. The spectral density of a signal
represents the distribution of signal power over frequencies. For this reason the spectral
density is also called power spectrum or power spectral density (PSD) in the context
of signal processing. In this section I will use the term power spectral density. One of
the main goals of spectral analysis is to estimate the PSD of a random signal from a
sequence of time samples of the signal.

Before dealing with PSDs, we will first define the energy spectral density of a de-
terministic signal. Let {y(t) : t = 0,±1,±2, . . .} be a deterministic discrete-time data
sequence that is obtained by sampling a continuous-time signal. To keep the notation
simple the time variable t is assumed to be measured in units of the sampling interval,
i.e., y(t) = yc(t · Ts), where yc(·) is the continuous time signal and Ts is the sampling
time interval. If {y(t)} has finite energy, i.e.,

∞∑
t=−∞

|y(t)|2 <∞, (7.11)

then, under certain regularity conditions, the sequence {y(t)} has a discrete-time
Fourier transform (DTFT) that is defined as

Y (ω) =
∞∑

t=−∞

y(t)e−iωt, (7.12)

where i =
√
−1. Here, the (angular) frequency ω is measured in radians per sampling

interval. The physical frequency variable ω̄ [rad s−1] is given by ω̄ = ω/Ts. We define

S(ω) := |Y (ω)|2. (7.13)

One can show that
∞∑

t=−∞

|y(t)|2 =
1

2π

∫ π

−π
S(ω)dω. (7.14)

The above equality is called Parseval’s theorem and shows that S(ω) represents the
distribution of sequence energy. Thus, S(ω) is called energy spectral density.

We will now turn towards random signals. Usually the signals observed are not
deterministic and their variation in the future is unknown. We assume that the discrete-
time signal {y(t) : t = 0,±1,±2 . . .} is a wide-sense stationary stochastic process with
zero mean, i.e.,

E[y(t)] = 0 for all t. (7.15)
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The observed signal is just one sample path of the signal and we cannot simply carry
over the definitions for deterministic discrete-time signals unchanged because the sam-
ple paths do not have finite energy. However, since a random signal usually has a finite
average power, we can define its PSD. An alternative definition of the PSD Φ(ω) is
given by

Φ(ω) = lim
N→∞

E

 1

N

∣∣∣∣∣
N∑
t=1

y(t)e−iωt

∣∣∣∣∣
2
 . (7.16)

This definition is similar to the definition of energy spectral density in the deterministic
case. From this definition, methods for the numerical approximation of PSDs can be
obtained.

The PSD Φ(ω) is a periodic function with period 2π. So Φ is fully described by its
values in the interval [−π, π]. Alternatively, we can view the PSD as a function of the
frequency

f =
ω

2π
(7.17)

taking values in the interval f ∈ [−1/2, 1/2]. Furthermore, Φ(ω) is symmetric for
real-valued signals.

When working with real data we only have a finite number of samples of the signal
to work with. How can we estimate the PSD from this record? A common estimator
for the PSD is the periodogram which is derived from the definition (7.16) of the PSD
by neglecting the expectation and limit operation. Let y = {y(t)}Nt=1 be a finite-length
record of a wide-sense stationary process. Then the periodogram of y is defined as

Φ̂p(ω) =
1

N

∣∣∣∣∣
N∑
t=1

y(t)e−iωt

∣∣∣∣∣
2

. (7.18)

In practice we cannot evaluate the periodogram over a continuum of frequencies. For
the computation we need to choose an appropriate frequency sampling scheme, e.g.,

ωk =
2π

N
k, k = 0, . . . , N − 1. (7.19)

We define
W := e−i

2π
N . (7.20)

Then, for the computation of Φ̄p(ω) at the frequency sample ωk, we only need to
calculate the discrete Fourier transform (DFT)

Y (k) =
N∑
t=1

y(t)W k, k = 0, . . . , N − 1. (7.21)

To calculate the DFT one can use the fast Fourier transform (FFT) by Cooley &
Tukey (1965). The FFT is a computer algorithm to efficiently compute the DFT of a
signal. While the number of complex floating point operations required to perform a
DFT is approximately N2, the number of operations required for the FFT reduces to
(N/2) log2(N).
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Fig. 7.6: Spectral densities of a 30 second signal of just noise. Shown in red is the PSD for
the new method and shown in blue is the PSD of a signal obtained with the old method. The
overall shape is very similar, but the intensity is slightly higher for the new method.

7.4 Bartlett’s Method and PSD Estimates
A disadvantage of the periodogram as an estimator for the PSD is its high statistical
variability. Moreover, the variance at a given frequency does not decrease as the number
of samples increases. There are several methods to reduce the variance and fluctuations
of the estimated spectrum. One of these methods is Bartlett’s method (Bartlett, 1950).
The basic idea of the Bartlett’s method is to subdivide the available sample of N
observations into L = N/M subsamples of lengthM , calculate the periodograms of each
segment and then average the periodograms obtained from the individual segments.

Denote by

yj(t) := y((j − 1)M + t),
t = 1, . . . ,M

j = 1, . . . , L
(7.22)

the observations of the jth subsample. The corresponding periodograms are given by

Φ̂j(ω) =
1

M

∣∣∣∣∣
M∑
t=1

yj(t)e
−iωt

∣∣∣∣∣
2

. (7.23)

Then the Bartlett estimate of the PSD is given by

Φ̂B(ω) =
1

L

L∑
j=1

Φ̂j(ω). (7.24)

I implemented the Bartlett’s method as an S-Lang program, using the FFT routine
from the S-Lang GSL library module1. Figure 7.6 shows the resulting PSD estimate

1http://space.mit.edu/CXC/software/slang/modules/gsl/
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Fig. 7.7: Predicted PSD of the steady state current noise as derived by Irwin & Hilton
(2005).

of a 30 second simulation output of just noise for a segment length of M = 214. For
comparison the PSD of a 30 second noise simulation with the old method is shown in
red. We can see that the shape of the two PSDs is very similar. The overall intensity
is slightly higher for the new method.

Irwin & Hilton (2005) derived theoretical formulas for the PSDs from different noise
sources by using a nonlinear equilibrium ansatz. They find that the PSD of the steady
state current noise due to Johnson noise in the TES is

SITES
(ω) = 4kBT0R0

ξI
L 2
I

(1 + ω2τ 2)|sI(ω)|2, (7.25)

with

sI(ω) =− 1

I0R0

[
L

τelR0LI

+

(
1− RL

R0

)
(7.26)

+ iω
Lτ

R0LI

(
1

τI

+
1

τel

)
− ω2τ

LI

L

R0

]−1

, (7.27)

where LI is the low-frequency loop gain, τ is the thermal time constant, τel is the
electrical time constant, τI is the current-biased thermal time constant, and ξ(I) =
1 + 2β. Fore more details about these parameters see Irwin & Hilton (2005). Similarly,
Irwin & Hilton (2005) find that the PSD of the steady state current noise due to
Johnson noise in the load resistor is

SIL(ω) = 4kBTLI
2
0RL

(LI − 1)2

L 2
I

(1 + ω2τ 2
I )|sI(ω)|2, (7.28)

and the PSD due to thermal fluctuation noise is given by

SITFN
(ω) = 4kBT

2
0G× FLINK(T0, Tbath)|sI(ω)|2, (7.29)
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where FLINK(T0, Tbath) describes the noise power flow over the thermal link. This
parameter usually has values between 0.5 and 1 (Kinnunen, 2011). The overall PSD of
the steady state current noise due to these three noise sources is then

S(ω) = SITES
(ω) + SIL(ω) + SITFN

(ω). (7.30)

Figure 7.7 shows the resulting PSD curve for the parameters of the simulated TES
pixel from Table 7.1. We see that the overall shape of the PSD is in fact very similar
to the PSD of the simulations shown in Fig. 7.6. The predicted intensity seems to be
lower than for the simulations. However, due to several different PSD normalizations
that are used in spectral analysis one must be very careful in direct comparisons of the
two PSDs. The analysis of this subtle point is still in progress.

To sum up, I can say that my new simulation results do not differ much from the
simulations done before. This result is very beneficial because it also confirms all the
simulations generated with tessim before my work that contributed to the development
of the Athena X-IFU detector. However, now we can use a numerical integrator that is
especially designed for differential equations affected by noise instead of the heuristic
method implemented before.

7.5 Event reconstruction
In this section I briefly describe how the photon energies can be determined from the
noisy current pulses. This process is called event reconstruction and currently several
different reconstruction methods are developed and examined for the Athena X-IFU
using simulation results from tessim (Peille et al., 2016). The software package aimed
at performing the event reconstruction on board Athena is called SIRENA and cur-
rently in development (Ceballos et al., 2017). The SIRENA software is also integrated
in the SIXTE end-to-end simulator in order to test and evaluate its performance.

The event reconstruction is done in three steps. First, the events have to be de-
tected. Then the events are graded and finally their energy is determined. One of the
methods for the event energy determination currently tested for the X-IFU is called
optimal filtering and uses the noise spectral density (Peille et al., 2016). In this method
one assumes that the detector response is linear and that the pulse shapes are identical
for all energies. Thus, every pulse is just a scaled version of a single template pulse.
A second assumption of this method is that the noise is stationary. Then the scaling
factor E of each pulse can be estimated by minimizing the weighted sum

χ2 =
∑ [D(f)− E × S(f)]2

N2(f)
, (7.31)

where N(f) is the PSD of the noise, D(f) is the DFT of the signal, and S(f) is the
DFT of the template pulse. As the X-IFU detector is non-linear, this energy estimate is
then transformed by the application of a gain scale in order to obtain the final estimate.

In addition to the optimal filtering method more advanced event reconstruction
techniques are currently studied. More details about the different reconstruction al-
gorithms and an in depth study of their performance can be found in Peille et al.
(2016).



Chapter 8

Conclusion and Outlook

The aim of this thesis was to model and simulate transition-edge sensor based mi-
crocalorimeters by using stochastic differential equations. I successfully implemented a
stochastic Runge-Kutta method in the tessim software tool within the SIXTE simula-
tion framework in order to solve the resulting system of stochastic differential equations
numerically.

The results of my simulations show that the difference between this new approach
and the simulations done before with tessim is minimal. The simulations show that
the effect of noise on the detector signal is greatest at photon energies below 1 keV.
Before my work it was not clear how much of a difference this new simulation method
would make on the detector signals. Detailed studies of the instrument performance of
the Athena X-ray observatory will be performed with the SIXTE software framework
in the future. Thus, it was important to make sure that this step in the simulation
chain is done correctly.

The fact that my simulations show no drastic differences also confirms all previous
studies performed with the tessim tool. However, we can now use an integrator that
is especially designed for differential equations affected by noise and which can easily
be further modified in the future.

The theoretical noise PSD needs to be examined in order to understand where the
difference to the simulations originates. Because there was a slight difference between
the noise PSDs of the simulations, it would be interesting to see which method is closer
to the predicted values.

There are always trade-offs between accuracy and computation time in numerical
simulations. Since the stochastic integrator is more complex than the fourth order
Runge-Kutta method implemented before, the computation time slightly increases for
the new method. This effect will sum up significantly for longer simulation times.

Adaptive step size control could be a possible way to mitigate this effect and reduce
the computation time. The current pulses happen in time frames of some milliseconds.
It is necessary to simulate these current pulses as accurately as possible in order to
calculate their exact energies with the event reconstruction software. The remaining
part of the simulation result is just noise where we could increase the step size without
great loss of information.

There are some methods proposed for the implementation of variable step sizes in
stochastic integrators (see, e.g., Ilie et al., 2015). However, the mathematical theory of
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these methods is by far not as well-developed as their deterministic counterparts and
still a very active research topic. The biggest challenge with adaptive step size control
for stochastic differential equations is the local error estimation. In addition, one has
to make sure to stay on the same sample paths of the corresponding Wiener processes
when changing the step sizes.
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Glossary of Notation

a.s. : almost surely.
IA : the indicator function of a set A, i.e., IA(x) = 1 if x ∈ A and

IA(x) = 0 if x /∈ A.
σ(U) : the σ-algebra generated by U .
a ∧ b : the minimum of a and b.

f : A→ B : the mapping f from a to b.
Rn : the n-dimensional Euclidean space.

Rn×m : the space of all real n×m-matrices.
R+ : the set of all nonnegative real numbers.
Bn : the Borel σ-algebra on Rn.
B : = B1.
AT : the transposed of a vector or matrix A.

trace(A) : the trace of a square matrix A = (aij)n×n ∈ Rn×n, i.e.,
trace(A) =

∑n
i=1 aii.

|v| : the Euclidean norm of a vector v ∈ Rn, i.e., |v| =
√
v2

1 + · · ·+ v2
n.

‖A‖ : the trace norm of a matrix A ∈ Rn×m , i.e., ‖A‖ =
√

trace(ATA).
‖X‖p : = (E [|X|p])1/p.

Lp(Ω,Rn) : the family of all Rn-valued random variables X with ‖X‖p <∞.
Cm(D,Rn) : the family of all continuously m-times differentiable Rn-valued

functions defined on D.
Lp([a, b];Rn) : the family of all Rn-valued Ft-adapted processes {Xt}a≤t≤b such that∫ b

a
|Xt|pdt <∞.

Mp([a, b];Rn) : the family of all processes {Xt}a≤t≤b in Lp([a, b];Rn) such that
E
∫ b
a
|Xt|pdt <∞.

Lp(R+;Rn) : the family of all processes {Xt}t≥0 such that for every T > 0,
{Xt}0≤t≤T ∈ Lp([0, T ];Rn).

Mp(R+;Rn) : the family of all processes {Xt}t≥0 such that for every T > 0,
{Xt}0≤t≤T ∈Mp([0, T ];Rn).

Vx : = ( ∂V
∂x1
, · · · , ∂V

∂xn
).

Vxx : = ( ∂2V
∂xi∂xj

)n×n.
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