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Zusammenfassung

In dieser Arbeit werden K-Schalen-Spektren von helium- bis hin zu neonähnlichem Argon behandelt.
Die Spektren wurden mit der SuperEBIT Elektronenstrahl-Ionenfalle und dem EBIT Kalorimeter
Spektrometer am Lawrence Livermore National Laboratory aufgenommen. Sowohl die zugrunde lie-
genden Aspekte der Atomphysik als auch der experimentelle Aufbau werden ausführlich behandelt.
Eine Simulation der Argonspektren wird mit dem Flexible Atomic Code (FAC) durchgeführt. Durch
den Vergleich der gemessenen mit den simulierten Spektren werden die stärksten Kα-Linien – d.h.
Übergänge von n = 2 nach n = 1 – identifiziert. Die gemessenen Übergangsenergien werden mit den
theoretischen Werten aus der Berechnung mit FAC verglichen. Auf etwaige Probleme bei der Simulation
der Spektren und deren Einfluss auf die Identifikation der Kα-Linien wird eingegangen.



Abstract

In this thesis K-shell spectra of He-like through Ne-like argon measured with the SuperEBIT electron
beam ion trap and the EBIT calorimeter spectrometer at the Lawrence Livermore National Laboratory
are presented. Both the underlying atomic physics and the experimental setup are discussed in detail.
A simulation of the argon spectra is performed with the Flexible Atomic Code (FAC). By comparing the
measured and the simulated spectra, the strongest Kα-lines, i.e., transitions from n = 2 to n = 1, are
identified. The measured transition energies are compared with the theoretical values of the calculation
with FAC. Problems that occured during the simulation of the spectra and their impact on the line
identification are addressed.
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Chapter 1

Introduction

The scientific discipline of spectroscopy was essentially founded by Joseph Fraunhofer (1814). In
1814, he discovered numerous dark lines in the solar spectrum during his study of the dispersion and
the refractivity of different types of glass. In a systematic investigation, he measured the distances
between these lines with a theodolite. That way, over 570 lines were mapped altogether. By carefully
altering his optical setup, Fraunhofer could already rule out that the lines emerge because of optical
effects. Hence, he concluded that they are an inherent feature of the solar light. However, a satisfying
explanation for the origin of these features could only be given after nearly half a century through
the work of Kirchhoff & Bunsen (1861) and Kirchhoff (1860). They used spectral analysis in order
to examine the emitted light of heated elements. Next to the discovery of the elements caesium and
rubidium, the main finding of their work was a coincidence between some of their measured emission
lines with the Fraunhofer lines. Thus, the cause of the Fraunhofer lines was correctly deduced to be
the absorption and isotropic re-emission of light in the Sun’s outer regions. Additionally, first clues
about the composition of the Sun’s atmosphere could be gathered.
From that time onwards, spectroscopy provided the main way to investigate astronomical objects.
Today, various parameters, such as the luminosity, the density, and the temperature of these objects,
can very well be estimated through fitting their spectra (Beiersdorfer et al., 2012). In the X-ray regime,
present-day spectra are acquired with several X-ray observatories, e.g. Chandra and XMM-Newton.
However, in order to extract the entire information of their measured data, very accurate results from
atomic physics about the specific energy levels of most elements are required. A prime example of this
is the need of rest wavelengths for the determination of the radial speed of celestial objects via the
Doppler effect (Doppler, 1842). Based on the fundamental importance of these reference data, various
atomic codes for the calculation of wavelengths have been written, alongside laboratory measurements
(Beiersdorfer et al., 2012).
In this thesis, measurements of argon K-shell transitions of several charge states produced in an electron
beam ion trap are analyzed. Chapter 2 gives a short introduction to the underlying aspects of atomic
physics. It explains the calculation of energy levels in quantum mechanics – with particular emphasis
on the approximations used for many-electron atoms or ions – and the radiative processes that lead
to the emergence of spectra. Following an overview of the measurement with the electron beam ion
trap, the detector is calibrated and some of its features are closely looked at in chapter 3. This chapter
closes with the identification of the Kα-lines and a comparison to the results of an atomic code. Finally,
chapter 4 gives a short summary of the obtained results, alongside the discussion of smaller problems
and an outlook on possible experiments to come.
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Chapter 2

Atomic Physics

Since it is the most famous problem in atomic physics and actually one of the few solvable ones, we will
start our crash course with the simplest of all atoms, that is to say the hydrogen atom. While mainly
handling many-electron atoms in this work, the better part of the concepts treated here, such as the
splitting of energy levels, the interaction of atoms with electromagnetic radiation, and the emergence
of spectra can easily be transfered to more complex systems. The definitions and derivations in the
following sections follow the style of Bransden & Joachain (2003) and Shankar (1994).

2.1 The Hydrogen Atom

The hydrogen atom is a two-body problem consisting of an electron of charge −e, mass m, and position
re, which is interacting with a proton of charge e, massM , and position rp. The interaction is described
by the Coulomb potential

V = − e2

4πε0 |re − rp|
. (2.1)

By working in the center of mass (CM) frame with the relative coordinate r = re − rp, the relative
motion of the electron and the proton can be separated from the CM motion (Shankar, 1994). The
latter matches the motion of a free particle, so that the two-body problem is effectively reduced to a
one-body problem of a particle with the reduced mass

µ =
mM

m+M
. (2.2)

In spherical coordinates the Laplace operator is given by

∆ =
d2

dr2
+

2

r

d

dr
− L2

~2r2
(2.3)

where
L = r× p (2.4)

is the angular momentum operator with p the momentum operator. The hydrogen atom’s energy levels
and wave functions are determined by solving the Schrödinger equation[

− ~2

2µ

(
d2

dr2
+

2

r

d

dr

)
+

L2

2µr2
+ V (r)

]
︸ ︷︷ ︸

=:H

ΨE = EΨE . (2.5)

Since the Coulomb potential and consequently equation (2.5) is invariant under spatial rotations, the
Hamiltonian H can be diagonalized simultaneously with the squared angular momentum operator L2

and one of the components of L, which we choose to be Lz. The eigenfunctions of L2 and Lz are given
by the spherical harmonics Ylm (Shankar, 1994). They fulfill the eigenvalue equations

L2Ylm = ~2l(l + 1) (2.6)
LzYlm = ~m (2.7)
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where l ∈ N denotes the orbital angular momentum quantum number and m ∈ {−l,−l + 1, ..., l} the
magnetic quantum number1. Since all terms of the Hamiltonian other than L2 act solely on the radial
component r, the eigenfunctions of equation (2.5) can be rewritten as (Shankar, 1994)

ΨElm(r,Θ,Φ) = REl(r)Ylm(Θ,Φ) =:
UEl(r)

r
Ylm(Θ,Φ) (2.8)

The Schrödinger equation then simplifies to[
− ~2

2µ

d2

dr2
+

~2l(l + 1)

2µr2
+ V (r)

]
UEl(r) = EUEl(r). (2.9)

Note that the subscript of the quantum number m has been dropped. Due to spherical symmetry, the
choice of the z-axis is downright arbitrary. Hence neither the Schrödinger equation nor the radial part
of the eigenfunctions depend on the quantum number m and every energy level will be (2l + 1)-fold
degenerate (Bransden & Joachain, 2003). In order to solve equation (2.9), it is convenient to first
consider the asymptotic limits (Shankar, 1994). In order to obtain normalizable eigenfunctions, one
has to require

UEl −−−→
r→∞

0. (2.10)

Thus at large r equation (2.9) becomes

− ~2

2µ

d2UEl

dr2
= EUEl (2.11)

and has the normalizable solution

UEl(r) = exp(−κr) with κ =
1

~
√
−2µE. (2.12)

Furthermore, we want the whole expression in the square brackets in equation (2.9) to be a Hermitian
operator with respect to its eigenfunctions. It can be shown (Shankar, 1994) that this requirement is
equivalent to: (

U∗1
dU2

dr
− U2

dU∗1
dr

)∣∣∣∣∞
0

= 0. (2.13)

Here, U1 and U2 represent any two of the radial functions introduced in equation (2.8). At the upper
limit the term vanishes due to (2.10), whereas the lower limit is zero if

UEl −−−→
r→0

c (2.14)

with c a constant. However, for c 6= 0 ΨE00 will not solve the Schrödinger equation at the origin
(Shankar, 1994) because

∆(1/r) = −4πδ3(r). (2.15)

With the centrifugal barrier dominating the Coulomb potential for r → 0, equation (2.9) is reducible
to

~2

2µ

d2UEl

dr2
=

~2

2µr2
l(l + 1)UEl. (2.16)

The ansatz UEl ∝ rα then yields
α(α− 1) = l(l + 1) (2.17)

and
α = l + 1 or α = −l (2.18)

where only the first solution satisfies (2.14) for c = 0. After rescaling ρ = κr, equation (2.9) becomes[
d2

dρ2 −
l(l + 1)

ρ2 +
ρ0

ρ
− 1

]
UEl(ρ) = 0 (2.19)

1It should be evident out of context whether m denotes the electron’s mass or the magnetic quantum number.
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with

ρ0 =
µe2

2~2πε0κ
. (2.20)

Applying the asymptotic limits (2.10) and (2.14), the general solution can be written as

UEl(ρ) = ρl+1 exp(−ρ)w(ρ) (2.21)

and one obtains the following differential equation for w(ρ):[
ρ

d2

dρ2 + 2(l + 1− ρ)
d

dρ
+ (ρ0 − 2(l + 1))

]
w(ρ) = 0. (2.22)

The ansatz of a power series, i.e.,

w(ρ) =
∞∑
k=0

bkρ
k, (2.23)

leads to the recursion formula
bk+1 =

2(k + l + 1)− ρ0

(k + 1)(k + 2l + 2)
bk. (2.24)

For large k we find

bk+1 −−−→
k→∞

2

k
bk (2.25)

which implies a total asymptotic behaviour

UEl(ρ) ∝
ρ→∞

exp(ρ) (2.26)

leaving us with eigenfunctions that cannot be normalized (Shankar, 1994). Consequently, the power
series (2.23) has to end at some k. This leads to the condition

bN+1 = 0 ⇔ 2(N + l + 1)− ρ0 = 0. (2.27)

Solving equation (2.27) and substituting ρ0 with equation (2.20) yields

E = −~2κ2

2µ
= − µe4

(4πε0)2 2~2(N + l + 1)2
(2.28)

In terms of the Bohr radius (Bohr, 1913)

a0 =
4πε0~2

me2 (2.29)

and the principal quantum number n = (N + l + 1), the energy levels of the hydrogen atom are given
by

En = − e2

(4πε0) a0

µ

m

1

2n2 . (2.30)

In atomic units (a.u.), which will be used to the benefit of a clearer notation in the following, the
physical constants of the electron massm, the elementary charge e, the electric force constant 1/(4πε0),
and the reduced Planck constant ~ are defined so that they are unity (Bransden & Joachain, 2003).
Equation (2.30) is then given by

En = − µ

2n2 . (2.31)

We see, that – in addition to the degeneracy in m – the energy eigenvalues are also independent of the
quantum number l. Altogether the hydrogen atom exhibits a degeneracy of

n−1∑
l=0

(2l + 1) = n2 (2.32)
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for each shell n. This additional degeneracy is often called “accidental” (Shankar, 1994). However it
can be explained by the conservation of a quantum mechanical analog to the Runge-Lenz vector (Pauli,
1926).
Up to the normalization the derivation of the wave functions ΨElm follows using equation (2.21) and
the recursion relation (2.24). With the power series terminating at N = n− l−1, the solution for w(ρ)
is given by the associated Laguerre polynomials L2l+1

n−l−1(2ρ), which leads to

Ψnlm(r,Θ,Φ) ∝ exp

(
− r

na0

)(
r

na0

)l
L2l+1
n−l−1

(
2r

na0

)
Ylm(Θ,Φ). (2.33)

As a last point we note that the above procedure can easily be transfered to any hydrogen-like ion by
substituting the proton mass with the nuclear mass in equation (2.2) and by making the shift e2 → Ze2

in the Coulomb potential.

2.2 Energy Level Splitting

2.2.1 The Dirac Equation

Despite the foregoing description of the hydrogen atom working quite well, precise measurements show
notable differences to the theoretical predictions obtained above (Bransden & Joachain, 2003). This
is due to the Schrödinger equation neglecting relativistic effects. A first stepping stone to a fully
relativistic equation is the relativistic energy-momentum relation

E =
√

c2p2 +m2c4. (2.34)

However, the way space and time are dealt with here is highly asymmetric, which can be seen by
expanding the square root (Shankar, 1994). The goal is an equation containing both, time and spatial,
derivatives to first order only. Such an equation was derived by Dirac (1928). Just like Dirac did, at
times it is preferably to just write down what one would like to obtain. In our case, the term in the
square root on the right-hand side of equation (2.34) has to be written as a perfect square

c2p2 +m2c4 = (cα · p + βmc2)2 (2.35)

whose radix is linear in p. Equating the coefficients then yields

α2
i = β2 = 1 (i = 1, 2, 3) (2.36)

[αi, αj ]+ = αiαj + αjαi = 0 (i 6= j) (2.37)
[αi, β]+ = 0 (2.38)

where [ , ]+ denotes the anticommutator. For these three requirements to be satisfied, αi and β have
to be 4 × 4 matrices (Shankar, 1994). They are unique up to unitary transformations. A common
representation is given by the Pauli matrices (Pauli, 1927)

α =

[
0 σ
σ 0

]
, β =

[
I 0
0 −I

]
(2.39)

with I the 2× 2 unit matrix. Knowing α and β we can write down the Dirac equation

i~
dΨ

dt
= (cα · p + βmc2)Ψ. (2.40)

Note that Ψ is now a four-component vector. It is convenient to introduce the two-component spinors
χ and Φ which are called the large and small components (Shankar, 1994). Separating the time
dependence, equation (2.40) can now be written as[

E −mc2 −cσ · p
−cσ · p E +mc2

] [
χ
Φ

]
=

[
0
0

]
. (2.41)
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2.2.2 The Fine Structure

In order to treat the hydrogen atom by means of the Dirac equation, the Coulomb potential V has to
be inserted. Equation (2.41) describes a system of two coupled differential equations. In the present
case, one of these equations can be used to express Φ in terms of χ:

Φ = (E +mc2 − V )−1cσ · pχ. (2.42)

This leaves us with
(E −mc2 − V )χ = cσ · p

(
1

E +mc2 − V

)
cσ · pχ. (2.43)

By introducing ES = E − mc2, the denominator on the right-hand side can be expanded in (v/c)2.
In zeroth order equation (2.43) just reduces to the Schrödinger equation (Shankar, 1994). Thus we
extend our expansion to one more order and an additional term emerges:

1

E +mc2 − V
=

1

2mc2

(
1 +

ES − V
2mc2

)−1

≈ 1

2mc2 −
ES − V
4m2c4 . (2.44)

Equation (2.43) then reads

ESχ =

[
p2

2m
+ V − σ · p(ES − V )σ · p

4m2c2

]
χ. (2.45)

An unpleasant feature herein is ES being found on both sides. We would like to express (ES − V ) in
terms of p. Since the concerned term should be of order (v/c)4 and with the factors σ · p already
delivering an order of (v/c)2, we can use the Schrödinger equation to make the substitution ES−V →
p2/2m (Shankar, 1994). However, to do so ES−V must act directly on χ. This can be easily achieved
by evoking the commutator, a trick commonly used in quantum mechanics:

(ES − V )σ · pχ = σ · p(ES − V )χ+ σ · [ES − V,p]χ

= σ · p p2

2m
χ+ σ · [p, V ]χ.

(2.46)

With this and the fact that the Pauli matrices are the generators of a Clifford algebra (Poole & Farach,
1982) equation (2.45) becomes

ESχ =

[
p2

2m
+ V − p4

8m3c2 −
iσ · p× [p, V ]

4m2c2 − p · [p, V ]

4m2c2

]
χ. (2.47)

It is now a lengthy and rather technical procedure to identify the last three terms of equation (2.47)
with the fine structure corrections in their typical notation

Hrm = − p4

8m3c2 (2.48)

Hso =
e2

2m2c2r3
S · L (2.49)

HD =
e2~2π

2m2c2 δ
3(r) (2.50)

since especially in case of the Darwin term HD the small component Φ has to be regarded in order
to obtain a properly normalized wave function. This leads to an additional term in equation (2.47).
Referring to Shankar (1994) these steps are omitted here. Let us instead turn our attention to the
roots of the three extra terms and their impact on the energy eigenvalues.
The term Hrm solely displays the correction to the kinetic energy due to the relativistic mass increase.
Since p does not act on spin or angular momenta, the energy adjustment through Hrm exclusively
depends on the principal quantum number n (Bransden & Joachain, 2003).
The spin-orbit term Hso describes the electromagnetic interaction between the electron’s spin magnetic
moment and the magnetic field created in the electron’s rest frame by the “proton’s movement”. It is
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preferably treated in a different set of eigenfunctions than the Ψnlmlms which lead to the simultaneous
diagonalization of H, L2, Lz and Sz. The functions Ψnlmlms result from the earlier used eigenfunctions
Ψnlm by adding the quantum number ms. After introducing the total angular momentum

J = L + S with eigenvalues j =

{
l ± 1/2 (l 6= 0)

1/2 (l = 0)
(2.51)

it is evident that an eigenbasis of H, L2, J2 and Jz also diagonalizes L · S as

J2 = L2 + 2L · S + S2. (2.52)

This leads to an energy shift of

∆Eso ∝ j(j + 1)− l(l + 1)− 3

4
(2.53)

and partly removes the degeneracy in l (Bransden & Joachain, 2003). Note that there is no contribution
of the spin-orbit term to all states with l = 0.
The Darwin term HD bears witness to the fact that the localization of a relativistic particle is restricted
to its Compton wavelength. Therefore, its potential energy is not just given by V (r), but also depends
on the electric field at the surroundings of r. Since Ψ(r = 0) 6= 0 is only valid for electrons with l = 0,
the energy of the remaining ones is not affected by HD.

2.2.3 Additional Splitting Effects

The story of energy level splitting does not cease at this point. In 1947 W.E. Lamb and R.C. Retherford
revealed an energy difference between the 2s1/2 and 2p1/2 levels2 of hydrogen (Lamb & Retherford,
1947). An exact derivation of this “Lamb shift” can be accomplished in quantum electrodynamics
(QED). Qualitatively it can be understood through the emission and absorption of virtual photons
whose repulsion is leading to a jitter motion of the electron.
Just like the electron, neutrons and protons are spin-1/2 particles. If the nuclear spin, i.e., the total
spin of all the neutrons and protons in the core of an atom, is taken into account, the hyperfine
structure emerges. Here, the energy corrections are the results of interactions between the nuclear
spin, the electron spin, and the electron’s orbital angular momentum similar to the one of L and S in
the fine structure.
Lastly also the degeneracy in the quantum numberm can be removed. Remember that it arises because
of the spherical symmetry of our problem. However, by applying an external electric or magnetic field to
the atom, this symmetry is broken. The energy corrections result from the interaction of the electron’s
electric dipole moment or its magnetic moment with the associated external field. The corresponding
phenomena are named the Stark effect (Stark, 1913) and the Zeeman effect (Zeeman, 1897) after their
respective discoverers.
As elucidated by Hell (2012), none of these additional corrections is of importance at the energy regime
analyzed in this thesis.

2.3 Many-electron Atoms

For atoms with two or more electrons no exact solution of the Schrödinger equation exists and one has
to evoke approximations. One approach to get good estimates is given by the Ritz method (Ritz, 1909)
where the parameters of a reasoned trial function are determined by means of variational calculus. With
the number of electrons increasing, these calculations can get as unhandsome as you wish. The pivotal
idea outlined hereafter is the central field approximation which assumes that every single electron
experiences a potential V caused by the atomic nucleus as well as by the other electrons.

2The level notation here is of the form nlj where the letters s, p, d, f, . . . correspond to orbital angular momentum
quantum numbers l = 0, 1, 2, 3, . . .
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2.3.1 The Central Field Approximation

The following treatment involves an atom or ion with N electrons and a nuclear charge Ze. At first all
the corrections introduced in 2.2 are disregarded and only the Coulomb potential of the nucleus and
the Coulomb repulsion between electrons is taken into account. The Hamiltonian is then given by

H =

N∑
i=1

(
−1

2
∇2
ri −

Z

ri

)
+

N∑
i<j=1

1

rij
(2.54)

where ri denotes the coordinates of electron i and rij = |ri − rj | (Bransden & Joachain, 2003). The
1/rij terms are what prevents any further attempts to an exact solution. We would like to treat these
terms by means of perturbation theory. However, for a large number of electrons their sum will not be
as negligible as necessary (Bransden & Joachain, 2003). Therefore, we split up the Hamiltonian just
to add and subtract the sum

∑
i V (ri) of spherical potentials:

H = Hc +H1 (2.55)

Hc =

N∑
i=1

(
−1

2
∇2
ri + V (ri)

)
(2.56)

H1 =

N∑
i<j=1

1

rij
−

N∑
i=1

(
Z

ri
+ V (ri)

)
. (2.57)

The difficulty here is to choose the effective potentials V (ri) in a way that on the one hand the per-
turbation H1 is sufficiently small and on the other hand the Schrödinger equation for the unperturbed
Hamiltonian Hc is acceptably simple to solve. An elaborate way to determine the effective potential is
via the Hartree-Fock method which will be discussed in 2.3.2 later on. But first, we want to establish
two vital limits for the effective potential. For a small distance ri of the electron i to the nucleus
compared to the other electrons we have rij ≈ rj and ri � rj . Thus the electron only “feels” the action
of the nuclear Coulomb potential. In contrast, large values of ri yield rij ≈ ri and the electron sees
the nucleus screened by all the other electrons. Summarizing we learn that

V (r) −−−→
r→0

−Z
r

(2.58)

V (r) −−−→
r→∞

−Z −N + 1

r
. (2.59)

2.3.2 The Hartree-Fock Method

Via some fundamental requirements, the Hartree-Fock method builds up on the central field approach
and delivers equations for every individual electron wave function. To deal with the Pauli exclusion
principle (Pauli, 1925), the N -electron wave function is given by a Slater determinant

Φ(q1, q2, . . . , qN ) =
1√
N !

∑
P

(−1)sgnPP uα(q1)uβ(q2) · · ·uν(qN )︸ ︷︷ ︸
=:ΦH

(2.60)

which is written in terms of a sum over all permutations P of the electron coordinates qi for the benefit
of a simple notation. Note that the qi embrace both the spatial coordinates and the spin variable of
the respective electron while the letters α, β, . . . , ν denote a particular set of quantum numbers. We
then ask for all the spin-orbitals uλ to be orthonormal, i.e.,

(uµ, uλ) :=

∫
dq u∗µ(q)uλ(q) = δλµ. (2.61)

We start with equation (2.54) and partition the Hamiltonian into the sum H1 of all the single electron
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Hamiltonians and the interaction term H2, namely

H1 =
N∑
i=1

(
−1

2
∇2
ri −

Z

ri

)
=:

N∑
i=1

hi (2.62)

H2 =

N∑
i<j=1

1

rij
(2.63)

The Hartree-Fock approach is a special form of the variational method where the correct wave functions
are determined by exploiting the fact that they are stationary points of the functional

E[Φ] = (Φ, HΦ) (2.64)

which just represents the expectation value of the Hamiltonian in the state Φ (Shankar, 1994). Before
carrying out the actual variation, let us first simplify equation (2.64). As long as the occupied states
stay the same, the Hamiltonian does not notice any permutation of electron coordinates and as a
consequence commutes with any permutation P . This allows us to write the expectation value of H1

as

(Φ, H1Φ) =
N∑
i=1

∑
P

(−1)sgnP (ΦH, hiPΦH)

=
N∑
i=1

(ΦH, hiΦH)

=
∑
λ

(uλ(qi), hiuλ(qi))︸ ︷︷ ︸
=:Iλ

λ = α, β, . . . , ν

(2.65)

where equation (2.61) was used to get from the first line to the second. The calculation for H2 can be
performed analogously:

(Φ, H2Φ) =
∑
i<j

∑
P

(−1)sgnP (ΦH,
1

rij
PΦH)

=
1

2

∑
λ

∑
µ

[(
uλ(qi)uµ(qj),

1

rij
uλ(qi)uµ(qj)

)
︸ ︷︷ ︸

=:Jλµ

−
(
uλ(qi)uµ(qj),

1

rij
uµ(qi)uλ(qj)

)
︸ ︷︷ ︸

=:Kλµ

] (2.66)

With these it is possible to express equation (2.64) in a simpler form, namely

E[Φ] =
∑
λ

Iλ +
1

2

∑
λ

∑
µ

[Jλµ −Kλµ]. (2.67)

Starting from here, we are now ready to look at the variations of the spin-orbitals uλ in order to find
the actual wave functions. Note, however, that due to the requirement of orthonormality the method
of Lagrange multipliers calls for the functional

L[Φ] = E[Φ] +
∑
λ

∑
µ

ελµ(δλµ − (uλ, uµ))

= E[Φ] +
∑
λ

Eλ(1− (uλ, uλ))
(2.68)

to be “minimized” rather than the actual functional E[Φ] alone (Bransden & Joachain, 2003). In
the second line of equation (2.68), the matrix ελµ of Lagrange multipliers was assumed to be diagonal
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without loss of generality as this can always be achieved through an appropriate unitary transformation.
The variation of the u∗λ then yields

δL = δ

(∑
λ

(uλ(qi), hiuλ(qi)) +
1

2

∑
λ,µ

[(
uλ(qi)uµ(qj),

1

rij
uλ(qi)uµ(qj)

)

−
(
uλ(qi)uµ(qj),

1

rij
uµ(qi)uλ(qj)

)]
+
∑
λ

Eλ(1− (uλ(qi), uλ(qi)))

)

=hiuγ(qi) +
∑
µ

(
uµ(qj),

1

rij
uµ(qj)

)
︸ ︷︷ ︸

=:V d
µ (qi)

uγ(qi)

−
∑
µ

(
uµ(qj),

1

rij
uγ(qj)

)
uµ(qi)︸ ︷︷ ︸

=:V ex
µ (qi)uγ(qi)

−Eγuγ(qi)
!

= 0 ∀γ

(2.69)

where we have defined the direct operator V d
µ and the exchange operator V ex

µ . The term containing
the direct operators can be interpreted as the mean Coulomb potential of all the other electrons on the
i-th one. The exchange operator has no classical analogon. It only acts on electrons with the same spin
variable and by doing so manifests the Pauli exclusion principle due to lowering the total interaction
energy by keeping these electrons apart (Bransden & Joachain, 2003). The equations (2.69) are called
the Hartree-Fock equations. By applying the introduced operators, these equations are[

− 1

2
∇2
ri −

Z

ri
+
∑
µ

V d
µ (qi)−

∑
µ

V ex
µ (qi)︸ ︷︷ ︸

=V(qi)

]
uγ(qi) = Eγuγ(qi). (2.70)

While they do look like single particle Schrödinger equations, we note that V delicately depends on
all spin-orbitals uµ via the direct and exchange operators. As a result the Hartree-Fock equations can
only be solved iteratively (Bransden & Joachain, 2003). The general procedure thereby is outlined in
the following:

1. Start with a particular set of spin-orbitals u1
α, u

1
β, . . . , u

1
ν

2. Calculate V

3. Solve equation (2.70) for V → u2
α, u

2
β, . . . , u

2
ν

4. Goto 2.

The iteration proceeds until the difference of Vn and Vn−1 is sufficiently small. The Hartree-Fock
method is therefore called a self-consistent field method.
The Slater determinant composed of the final spin-orbitals unα, unβ, . . . , u

n
ν is known as the Hartree-Fock

wave function ΨHF. The associated energy expectation value is given by

EHF = (ΨHF, HΨHF). (2.71)

2.3.3 Corrections and Coupling Schemes

The determination of the Hartree-Fock energy EHF is of course not the whole story. Through the
Hartree-Fock potential V(qi) the terms in equation (2.55) are well-defined. Possibly V(qi) has to be
averaged over the angles and the spin coordinate to provide a central potential V(ri) since the Hartree-
Fock potential is not spherically symmetric as soon as one subshell is incomplete (Bransden & Joachain,
2003). H1 then contains all the corrections between the Hartree-Fock potential and the actual exact
non-relativistic Coulomb interactions. These varieties could now be treated by means of perturbation
theory (Bransden & Joachain, 2003). We note, however, that further adjustments have to be made.
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Table 2.1: The possible terms for the electron configurations np n′p and np2.

electron configuration possible terms
np n′p 1S,1 P,1 D,3 S,3 P,3 D
np2 1S,1 D,3 P

Fundamentally, just like for the hydrogen atom relativistic effects have to be taken into account. For
a many-electron atom, the spin-orbit term is by far the most dominant of the effects discussed in 2.2.2
(Bransden & Joachain, 2003). That leads to an additional term in the total Hamiltonian:

H = Hc +H1 +H2 (2.72)

H2 =
∑
i

ζ(ri)Li · Si (2.73)

ζ(ri) =
1

2m2c2ri

dV

dri
(ri). (2.74)

Now both H1 and H2 are perturbing terms and the manner of performing the perturbation is subject
to their relative strength. Here only the cases H1 � H2 and H2 � H1 are considered. The first one
leads to the so called L-S (or Russell-Saunders) coupling while the second one is referred to as jj
coupling. The intermediate coupling case where H1 ≈ H2 is highly delicate and will not be tackled in
this thesis.

L-S coupling

With H1 being the dominant perturbing term, H2 is ignored in the first step. Hence we deal with
the Hamiltonian H = Hc + H1 again. The total orbital angular momentum L as well as the total
spin angular momentum S commute with H which can easily be verified owing to the lack of spin-
orbit coupling. This gives rise to the application of the term symbols 2S+1L to describe the energy
eigenvalues.
For a particular electron configuration the possible terms can be obtained via the rules for the addition
of angular momenta. Briefly worded, they state that the allowed values for the total orbital angular
momentum quantum number L resulting from the addition of L1 and L2 with quantum numbers l1
and l2 are

L = |l1 − l2|, |l1 − l2|+ 1, . . . , l1 + l2. (2.75)

Exactly the same relation holds for the addition of spin angular momenta. Note that the only accessible
term for a closed subshell is 1S (Bransden & Joachain, 2003). Due to the Pauli exclusion principle
special attention is required if the added angular momenta belong to electrons of the same subshell.
Concerning this, look at Table 2.1 for a brief example.
In the second step, we reconsider H2. Now the Hamiltonian does not commute with L and S, but
with the total angular momentum J. Every term 2S+1L therefore splits into 2S + 1 (L ≥ S) or
2L + 1 (L < S) fine structure components denoted by the Russell-Saunders symbols 2S+1LJ and the
degeneracy is removed in parts. An example is shown in Fig. 2.1.

jj coupling

The regime of jj coupling – where H2 is of more importance relative to H1 – is entered for high atomic
numbers Z (Bransden & Joachain, 2003). In particular it is employed in order to study highly charged
ions since in that case the impact of H1 is cut down based on the lower number of electrons. In the
first step of the perturbation only the spin-orbit interaction is added to the central Hamiltonian Hc.
The resulting Hamiltonian can be written as a sum of individual Hamiltonians, namely

H = Hc +H2 =
∑
i

−1

2
∇2
ri + V(ri) + ζ(ri)Li · Si. (2.76)

15



Figure 2.1: Splitting of the electron configuration np n′p in L-S coupling (Bransden & Joachain, 2003).

Figure 2.2: Splitting of the electron configuration ns n′p in j-j coupling (Bransden & Joachain, 2003).

Entirely analogously to the treatment of the spin-orbit term in the fine structure of the hydrogen atom
in section 2.2.2, we diagonalize Li · Si for all i by evoking Ji = Li + Si. Then every eigenvalue of H is
characterized by the corresponding quantum numbers j1, j2, . . . , jN .
The perturbation of H1 in a second step then leads to further splitting with respect to the total angular
momentum quantum number J . Hence a elaborate notation for the spectral terms has to include all
the ji and J . Usually, the former are written in parentheses while the latter is denoted as a subscript.
A general term symbol thus is represented by (j1, j2, . . . , jN )J . An example is depicted in Fig. 2.2.
In order to display the entire information about one term, the subshell of each electron must also
be denoted. Additionally, the genesis of the coupling can be outlined by introducing intermediate
quantum numbers Ji. Thus, the term symbols that we will employ later are in the form of

(. . . ((nlj1nlj2)J1)nlj3)J2 . . .)J (2.77)

where the intermediate quantum number J1 specifies the coupling of j1 and j2. If there is only one
possible value for any Ji, e.g., for a closed subshell, the notation of that number will be omitted.

2.4 Atoms and Electromagnetic Radiation

Having dealt with the energy levels in atoms, we now turn our focus on the origin of spectral lines.
Therefore we shall discuss the interaction of an atom with radiation. There are three fundamental
mechanisms to look at. First of all an electron’s transition from a higher to a lower energy state in
the atom can be realised spontaneously through emission of a photon. In addition, the same transition
can be enforced by photons of external radiation fields. Lastly, these photons can also be absorbed
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and lead to the inverse transition. One refers to these processes as spontaneous emission, stimulated
emission, and absorption (Bransden & Joachain, 2003). In what follows, we will treat the radiation field
completely classically and derive formulas for the transition probabilities. In the case of spontaneous
emissions we will follow the argumentation of Einstein (1917).

2.4.1 Atoms in Electromagnetic Fields

Maxwell’s equations allow the treatment of electric and magnetic fields via a scalar potential φ and a
vector potential A. In Coulomb gauge, i.e., ∇A = 0, and radiation gauge, i.e., φ ≡ 0, an N -electron
atom’s Hamiltonian is given by (Bransden & Joachain, 2003)

H(t) =
1

2m

N∑
i=1

[−i~∇ri + eA(ri, t)]
2 + V

= − ~2

2m

N∑
i=1

∇2
ri + V︸ ︷︷ ︸

=:H0

−i~
e

m

N∑
i=1

A(ri, t) · ∇ri +
e2

2m

N∑
i=1

A2(ri, t)︸ ︷︷ ︸
=:Hint(t)

(2.78)

where H0 is just the ordinary Hamiltonian describing the atom in the absence of any radiation field
whereas the interaction is entirely covered by Hint. In the following derivation, we shall exclusively
regard small fields. Thus the A2 term is disregarded, yielding

Hint(t) ≈ H ′(t) = −i~
e

m

N∑
i=1

A(ri, t) · ∇ri . (2.79)

The time-dependent Schrödinger equation then is

i~
d

dt
Ψ(t) =

[
H0 +H ′(t)

]
Ψ(t) (2.80)

where H ′(t) will be handled as a perturbation. The dependence on the electron coordinates ri is
suppressed in the current notation. Let Ek and Ψk then denote the eigenvalues and eigenfunctions of
the unperturbed Hamiltonian, namely

H0Ψk = EkΨk. (2.81)

With the Ψk representing a complete set, any solution of the unperturbed system can be expanded as

Ψ(t) =
∑
k

bk(t)Ψk exp

(
− i

~
Ekt

)
. (2.82)

By inserting this expansion into equation (2.80) and using equation (2.81), a system of coupled differ-
ential equations for the coefficients bb(t)

d

dt
bb(t) = (i~)−1

∑
k

H ′bk(t)bk(t) exp(iωbkt) (2.83)

can be obtained through the projection on the Ψb (Bransden & Joachain, 2003) where

H ′bk(t) = (Ψb, H
′(t)Ψk) (2.84)

ωbk =
Eb − Ek

~
. (2.85)

Assuming that the system is in the eigenstate Ψa before the radiation is switched on, the simultaneous
equations (2.83) can be solved by integration, namely

bb(t) = (i~)−1

∫ t

0
dt′H ′ba(t

′) exp(iωbat
′). (2.86)
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If the vector potential is given in the general form

A(r, t) = ε

∫ ∞
0

dωA0(w) cos(k · r− ωt+ αω) (2.87)

of an expansion in plane waves, where ε indicates the polarisation and αω a random phase factor, bb(t)
can be shown to vanish unless

ωba ≈ ±ω. (2.88)

The connection of the states a and b through the absorption or emission of a photon with energy ~ω
somewhat naturally follows (Bransden & Joachain, 2003).

2.4.2 Transition Rates

The squared norm of the coefficient bb(t) can be interpreted as the probability to find the system in
the state b at time t (Bransden & Joachain, 2003). Calculating the time derivative of this quantity
yields an expression for the likeliness of a transition from state a to state b. Depending on whether the
said transition results from an absorption or an emission, the labels a and b are possibly interchanged
so that the state b is always the one with higher energy. The transition rates for absorption Wba and
for stimulated emission W̄ab are then introduced as

Wba =
4π2

m2c

(
e2

4πε0

)
I(ωba)

ω2
ba

|Mba(ωba)|2 (2.89)

W̄ab =
4π2

m2c

(
e2

4πε0

)
I(ωba)

ω2
ba

∣∣M̄ab(ωba)
∣∣2 (2.90)

where we defined the intensity

I(ω) =
1

2
ε0cω2A2

0(ω) (2.91)

and the matrix elements

Mba = N (Ψb, exp(ik · r)ε · ∇rΨa) (2.92)
M̄ab = N (Ψa, exp(−ik · r)ε · ∇rΨb) . (2.93)

After integrating the matrix elements by parts,

M̄ab = −M∗ba (2.94)

is quickly verified (Bransden & Joachain, 2003). Since only the squared norms of these terms appear
in equations (2.89) and (2.90), equation (2.94) implies

W̄ab = Wba (2.95)

in accordance with the principle of detailed balance, which states that – in equilibrium – any transi-
tion between two states is as probable as its reverse process. This principle was first formulated by
Boltzmann (1872) in the context of collisions of gas particles.

2.4.3 The Einstein Coefficients and Spontaneous Emission

The classical treatment of the radiation field led to the neglect of spontaneous emissions in the calcu-
lation of W̄ab (Bransden & Joachain, 2003). While the same treatment by means of QED would give
the correct answer in a straightforward way, we will make a small detour and express the transition
rate for spontaneous emission W s

ab relative to W̄ab following the work of Einstein (1917) and using the
principle of microreversibility.
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Let a and b denote two states of an atom. Considering a large number of such atoms, let Na and Nb

furthermore denote the number of atoms in the respective state. The numbers of transitions per time
are then given by

Ṅba = WbaNa = BbaNa
I(ωba)

c
(2.96)

Ṅab =
(
W̄ab +Aab

)
Nb =

(
Bab

I(ωba)

c
+Aab

)
Nb (2.97)

where we defined the Einstein coefficients Bba for absorption, Bab for stimulated emission, and Aab for
spontaneous emission. In equilibrium we expect

Ṅba = Ṅab (2.98)

which yields
Nb

Na
=

Bbaρ(ωba)

Aab +Babρ(ωba)
with ρ(ω) =

I(ω)

c
. (2.99)

On the one hand, this ratio must be equal to a Gibbs-Boltzmann distribution (Gibbs, 1902), i.e.,

Nb

Na
= exp

(
−~ωba
kBT

)
. (2.100)

On the other hand, the energy density ρ(ω) should follow Planck’s law (Planck, 1900), i.e.,

ρ(ω) =
~ω3

π2c3

1

exp (~ω/(kBT ))− 1
. (2.101)

To fulfill both of these requirements, the Einstein coefficients must obey the relations

Bba = Bab (2.102)

Aab =
~ω3

ba

π2c3
Bab. (2.103)

Identifying W s
ab with Aab then gives the aspired transition rate for spontaneous emission.

In an electron beam ion trap, the excitations are realised through electron-atom collisions and the
radiation field does not play a major role. Thus, among all the deexcitation processes leading to the
emission of a photon, spontaneous emissions are the most dominant.
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Chapter 3

Measurements

3.1 EBIT/ECS

The ions which are investigated in this thesis where produced and monitored in an electron beam
ion trap at the Lawrence Livermore National Laboratory (LLNL). The very first electron beam ion
trap (EBIT) was installed there in 1986 to provide an alternative and, in comparison to accelerator
experiments, rather small sized method for the study of highly charged ions, as its quasi precursor,
the electron beam ion source (EBIS), has not been too successful at this (Levine et al., 1989). The
first measurements surpassed the expectations. The containment times were longer than predicted and
plasma instabilities that heat the ions could be reduced with respect to EBIS (Levine et al., 1988).
Figure 3.1 shows a sketch of an EBIT. Basically, it consists of three main parts: an electron gun to
provide the actual beam, an ion trap, and a collector. Through collisions with the beam electrons, any
injected gas can be ionized. The ions are then confined to the trapping region for further investigations.
The whole apparatus is operating in ultra high vacuum.
The ion trap is built of three cylindrical drift tubes. The middle drift tube has a negative potential
with respect to the other two, forming a potential well for positively charged ions in axial direction.
In radial direction the ions are confined through the potential of the electron beam’s space charge.
Six radial ports in the middle tube allow for access to the trapping region. They are used for the
installation of various spectrometers and to inject lowly ionized or neutral gases into the trap. The
actual trap has a length of 2 cm (Levine et al., 1988) and is located in the center of an axial magnetic
field provided by a pair of superconducting Helmoltz coils. Through the magnetic field, the electron
beam is compressed. This process is supported by a focus electrode right after the electron gun. Since
the emission rate in X-rays is proportional to the beam’s current density, as pointed out by Marrs
(2008), the whole point of compressing the beam is to achieve a higher count rate.
The electron gun is mainly made of a cathode coated with tungsten and barium oxide. The electron
beam is generated through thermionic emission of the coating material’s electrons. Through the gun
anode the beam current can be adjusted (Levine et al., 1989), while the beam energy is determined
by the drift tube potential minus the space charge. After traversing the trap, the beam electrons are
dumped into a collector, which consists of cooled copper electrodes. In order to protect the electrodes,
another magnet is operated along with them. It counteracts the field of the Helmholtz coils and
consequently causes the beam to expand.
Our spectra were actually taken with SuperEBIT, a high energy variant of EBIT with a floating gun
that was put into operation at LLNL in 1992. While EBIT is usually operated with beam currents
around 100 mA and beam energies of about 10 keV, SuperEBIT allows for electron beam energies up
to nearly 250 keV (Beiersdorfer et al., 2003).
The emission spectra were recorded with the EBIT calorimeter spectrometer (ECS), which has been
operating at LLNL since 2007 (Porter et al., 2008). It was built at NASA’s Goddard Space Flight
Center. ECS consists of 32 pixels, each of which can thermally detect incident X-ray photons. The
whole detector array is shown in Fig. 3.2. Eighteen of the 32 pixels are midband pixels taking care of
an energy range from 0.1 to 10 keV, while 14 are designed to work in the high energy domain between
0.5 and 100 keV.
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Figure 3.1: Cross sectional sketch of EBIT (Levine et al., 1989).

Figure 3.2: The 36 pixel array of the ECS detector (Porter et al., 2008).
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Figure 3.3: Sketch of a basic calorimeter. Response in the temperature domain to an incident photon
(McCammon, 2005).

Each pixel can be thought of as a basic calorimeter consisting of three main parts: an absorber, a
thermistor, and a heat sink (McCammon, 2005). This setup is depicted in Fig. 3.3. Every time a
photon hits the absorber, its energy is thermalized there. Thus, the absorber has to be opaque in the
desired energy range and provide both fast thermalization and a low heat capacity. The last point
guarantees the resulting change in temperature to be rather large and therefore easier to measure. The
thermistor, a resistor whose resistance sensitively depends on its temperature, is connected with the
absorber through a thermal link. Because of its high values, the thermistor’s resistance is determined
by measuring the voltage drop across it, while being subject to a constant current. Finally, another
thermal link couples the thermistor to a heat sink, which, through various cooling systems (Porter
et al., 2008), brings the pixel back to a temperature of about 50 mK. The strength of said thermal
link has to be chosen wisely. The photon’s total energy will not be captured if the link is too strong,
while a weak link will inevitably prolong the detector’s dead time. A typical temperature change after
the absorption of a photon is shown in Fig. 3.3, where C denotes the absorber’s heat capacity, G the
conductivity of the thermal link to the heat sink, and τ the characteristic decay time.

3.2 Spectral Data

During the measurement, each photon event was recorded and given, among others, a time stamp, an
index indicating the relevant pixel, and the voltage drop across the thermistor. In order to deduce
the photon’s energy from this data, ECS has to be calibrated. This is discussed in greater detail in
section 3.3. Here only the guiding principle is mentioned. Several calibration spectra are additionally
recorded. In our experiment, sulfur, silicon, neon, and argon itself were used for that purpose.
The calibration spectra must contain transition lines which cover the energy range of interest and have
well established reference values. Therefore, the charge balance was caused to tend towards H- and
He-like ionization states in all these measurements. The entire measured data is presented in Fig.
3.4. The single spectra are labeled with the corresponding element’s symbol and, if required, with a
number.
An elaborate variation of EBIT’s parameters is necessary to produce the aspired charge balance. To
produce the H- and He-like ionization states, the electron beam has to be extremely focused and the
trap potential rather flat. The first point ensures a high collision rate, while through the second one
only highly charged ions are kept in the trap, since the trap’s potential, seen by the ions, strongly
depends on their charge. Accordingly, the trap is deepened and the beam widened once the production
of lower charge states is on the agenda. More importantly, the trap was dumped in cyclic intervals
to counter the accumulation of high charge states and to get rid of unwanted heavy elements that
build up in the trap over time. Primarily, the last point concerns tungsten and barium atoms emitted
from the electron gun. Since the atomic mass of both these elements is larger in comparison with the
injected gases, momentum conservation would cause the lighter elements to be kicked out of the trap.
However, the performance of the experimental setup does inevitably change slightly from day to day.
For instance, leftover foreign atoms of a previous measurement might influence the charge balance in
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Figure 3.4: The measured data. The argon spectra of interest are denoted by Ar1 and Ar2, the argon
calibration spectra by Ar(c).

the trap. Thus, the final set of parameters is usually found by trial and error.

3.3 Calibration

3.3.1 Drifts

As mentioned in the previous section, the changes in the daily performance of our experimental setup
require thorough fine tuning. In particular, this applies to ECS. Since the idea behind the whole
measuring apparatus is to be very sensitive to temperature changes, the cooling of the pixels needs
to be spot-on. Small temperature fluctuation in the pixels might lead to drifts of the line positions
in the voltage space, i.e., the function describing the relation between voltage and energy space might
be slightly time-dependent. Among others, the various calibration spectra of S were recorded to check
the order of these drifts. Therefore, they were run at the beginning and towards the end of the entire
measurement (see Fig. 3.4). Additionally, they would allow for adjustments by interpolating between
the single calibration spectra, should the drifts be too severe, and thus make for a high resolution
nevertheless.
The inspection of the drifts was carried out by reading in the data of the calibration spectra labeled
by S1 and S2 in Fig. 3.4 individually for every of the 16 used pixels and fitting a Gaussian function
to a specific calibration line. The Interactive Spectral Interpretation System (ISIS; Houck & Denicola,
2000) was used for this purpose. See Fig. 3.5 for an example. The differences between the fitted line
centers are listed in Table 3.1 along with their respective errors. By using the final results of the later
calibration (see section 3.3.2), the drifts can also be evaluated in terms of the detected energy. Here,
the mean of the drift amplitudes was determined to 0.25 eV. More importantly, the determined drift
values lie inside the error bars for all but two pixels and are consistent with a drift of 0 eV within the
error bars. Thus, the observed drifts are assumed to result from statistical fluctuations and not to
follow any major trend. In a first attempt to get a good calibration, all the available calibration data,
i.e., one calibration spectrum of every element, was used. More precisely, the spectra labeled by S1,
Ar(c), Ne, and Si in Fig. 3.4 were picked.
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Table 3.1: Shift of the line centers for every pixel.

Pixel Drift [mV]
0 0.3± 0.9
1 −0.2± 1.0
2 1± 8
3 0.9± 0.8
4 1.4± 0.8
6 0.6± 1.0
7 −0.2± 0.9
15 0.4± 0.9
24 −0.3± 0.9
25 0.3± 0.9
26 −0.1± 1.0
27 0.7± 1.0
28 −0.0± 1.0
29 −0.0± 0.9
30 −0.5± 1.0
31 0.5± 1.1
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Figure 3.5: A Gaussian function fitted to the calibration spectra S1 (top) and S2 (bottom).
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3.3.2 The CXRS Package

Since all the pixels slightly differ in their geometry and quality structure, they have to be calibrated
separately. To automatize this task, Ming Feng Gu wrote the so called CXRS package, which is
ordinarily used to calibrate ECS. It builds upon the assumption that the spectral key features are the
same in each pixel. To start off the calibration, the events of each pixel are binned to a histogram
with a bin size of 0.002 V. These histograms are then shifted, stretched, and compressed to match a
reference pixel. A file containing the scaling functions is created. It is invoked at a later time to assign
the calibration lines to their corresponding voltage in every pixel. At this point, the single pixel spectra
are checked for any suspicuous distinctions between themselves. All such must be considered at the
selection of the calibration lines (see below). Next, the histograms are added in the reference pixel
scale. In the added spectrum, the calibration lines are selected by hand. Their energies have to be well
known. Therefore, the choice falls on the H-like Lyman- and the He-like K-series. These systems are
sufficiently simple and accurate, experimentally validated calculations of their transition energies exist
(see, e.g., Gabriel, 1972; Drake, 1988; Vainshtein & Safronova, 1985; Garcia & Mack, 1965; Johnson
& Soff, 1985). A Gaussian line is fitted to each calibration line. By using the scaling functions the
respective line centers are determined for all pixels. A polynomial function of fourth order is then
fitted to the resulting pairs of voltage and energy, yielding the aspired connection between the two
quantities. In an ideal pixel, no voltage drop is logged as long as there is no incident photon. Hence,
the constant factor in the polynomial is set at zero and at least four calibration lines are necessary to
determine it decidedly.
From Ne and Ar, the lines Kα to Kδ and Lyα to Ly γ were used. In the spectra of S and Si, Lyβ
blends with Kδ and Kε respectively. These lines were therefore omitted. Thus, from the Lyman series
only Lyα was made use of in both cases, while Kα to Kγ were taken into account for S and Kα
to Kδ for Si. That way, an energy range from about 1 keV all the way up to above 4 keV was well
sampled with calibration lines. The reference values for the Lyman series were taken from Garcia
& Mack (1965). As far as the Kα-lines are concerned, the values come from Drake (1988). The
energies of higher transitions in the K-series, i.e., up to Kδ, can be found in Vainshtein & Safronova
(1985). However, as shown by Beiersdorfer et al. (1989), their values display obvious discrepancies to
experimental data. Having said that, the deviations are nearly the same for all transitions. Hence, the
gaps between them actually fit the experimental results quite well. Consequently, Kβ to Kδ originate
from Vainshtein & Safronova (1985), but were adjusted to match the ground states of Drake (1988).
Most of the used reference values are given in units of kayser = cm−1. The employed conversion factor3

is 1 cm−1 = 1.239841930 · 10−4 eV.
With regard to the evaluation of the low charge argon spectra, the quality of the calibration is the be-all
and end-all. The goodness of the calibration can be quantified by applying the stated polynomials to the
fitted line centers and comparing the results with the reference values. Since more than four calibration
lines have been used, no exact congruence is expected. This is based on the fact that the polynomial of
fourth order is a too elementary function to describe the precise correlation between measured voltage
drop and photon energy. Over- and underestimations of the reference values for different pixel would
then lead to artificial broadening of the spectral components and therefore downgrade the resolution.
If the differences should tend to be either positive or negative for all the pixels, the resolution will not
be affected as drastically, but the energy of the line centers will be off. Because of the large number of
calibration lines, differences of several eV emerged. By constraining the calibration lines to the actual
range of interest around 2900 and 3200 eV, the quality of the calibration could notably be improved.
The calibration lines of Ne and Si were completely neglected. Some of the higher transitions in Ar and
S were also ignored, assuming that their fits have not been the best due to their lower count rates.
Ultimately, only Ar Lyα, Lyβ, Kα, and Kβ as well as S Lyα, Kα, Kβ, and Kγ were left over. Hereby,
the mean absolute value of the differences between the fitted line centers and their reference values
could be reduced from 0.63 to 0.09 eV. For one pixel, the quality of the calibration is illustrated in
Fig. 3.6.
After this final calibration, the detected events can be transfered into energy space. A histogram with a

3It is taken from the NIST Reference on Constants, Units, and Uncertainty http://physics.nist.gov/cgi-bin/
cuu/Convert?exp=0&num=1&From=minv&To=ev&Action=Only+show+factor.
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Figure 3.6: Quality of the calibration. Exemplified for the reference pixel. The energy range containing
the argon spectra is indicated.

bin size of 0.5 eV is generated for each pixel. Finally, the histrograms are added up. The two resulting
Ar spectra are shown in Fig. 3.7.

3.3.3 Resolution

Most of the major peaks in the spectra consist of several transistion lines, which blend with each other.
In order to differentiate between at least some of them, the resolution of ECS has to be determined. For
this purpose, a Gaussian function is fitted to a non blended transition line. Under the assumption that
the resolution does not vary over the studied energy range, the full width at half maximum (FWHM)
of that Gaussian can be identified with the detector’s resolution. One line that meets that condition is
the one originating in the transition from the state 1P1 to the ground state 1S. Following the notation
of Gabriel (1972), this transition is called the resonance line w. The fit function integrates a Gaussian
function over every bin and assigns the resulting value to said bin. Hence, it is given by

g(Ebin−lo, Ebin−hi) =
A

σ
√

2π

∫ Ebin−hi

Ebin−lo

dE exp

[
−(E − E0)2

2σ2

]
(3.1)

with fit parameters A, E0, and σ. The relationship between the standard deviation σ and the FWHM
is

FWHM = 2
√

2 ln 2σ. (3.2)

For the spectrum Ar1 the fit yields a standard deviation of σ = 2.16± 0.06 eV, which corresponds to
a FWHM of 5.09 ± 0.15 eV. For the second Ar spectrum, the parameters are σ = 2.10 ± 0.08 eV and
consequently FWHM = 4.95 ± 0.19 eV. Within their respective error bars these results match quite
well. Their dimensions are also in line with the expectations for ECS (see Porter et al., 2008).

3.4 Comparison between the two Argon Spectra

In order to get a hang of the different lines in each peak, Gaussian functions (see equation 3.1) are
fitted to the two spectra. Their standard deviations are frozen to the respective values determined in
section 3.3.3. At the first step, only one Gaussian is assigned to every peak. Additionally, one has to
mind the minima between the peaks, i.e., the spectrum’s background. It results from transition lines
that are too weak to be resolved. To address this point, a polynomial of second order is appended
to the fit function. Since most of the spectral peaks result of more than one transition, the number
of Gaussians is raised consecutively. At first, this is pretty easy and can be done by eye, but with
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Figure 3.7: The two calibrated Ar spectra (top: Ar1, bottom: Ar2). Each peak is already marked with
its principal charge state.
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increasing number of Gaussian lines, the decision whether to add another component or not gets more
and more difficult.
A Monte Carlo method included in the ISISscripts4 is employed to cope with this issue. The simulation
generates numerous fake spectra by using the spectral model without the component that needs to
be tested for. In each bin of the applied energy grid, the number of counts is chosen randomly under
the assumption of a Poisson distribution. The mean of this distribution is given by the corresponding
value of the spectral model. Each resulting fake spectrum as well as the real one is fitted with the
model containing the additional component and the one without it. The difference in chi square ∆χ2

between the two fits is determined. The significance of the additional component is then given by the
fraction of fake spectra whose ∆χ2 is below the real one.
Following this procedure, a total amount of 20 Gaussians were distributed over the fit range from 2940
to 3160 eV in case of spectrum Ar1. For the second argon spectrum, the fit range was the same, but
22 single spectral components could be identified. The final fits for both spectra are shown in Fig. 3.8.
The fact that the lower charge states are more pronounced in the second spectrum is visible to the naked
eye. However, the question that is more intriguing is not about the abundances of the different ions,
but rather how the spectral components change and whether any additional ones arise. This cannot
be answered by just looking at the spectra. Therefore, the centers of the corresponding Gaussian
functions describing the spectral components are regarded and compared with each other. They are
listed in Table 3.2. For the better part, the line centers of the spectra match quite well within their
respective error bars. Notable differences only occur in the N-like, the O-like, and the neutral (F- to
Ar-like) peak. The low-energy tail of the N-like peak shows a distinct behaviour. Around 3005 eV a
line center is found in the first spectrum, that cannot be detected in the second. As we will see in
section 3.5, this is largely because a transition of Be-like ions is present in this region. Since the higher
charge states are, as addressed above, more abundant in the first spectrum, said transistion line stands
out visibly there. In comparison with the second spectrum, the remaining Gaussians have to be shifted
to provide a constantly good fit. Consequently, the assignment of the transition lines to the Gaussians
will show some variations (see section 3.5). In the O-like peak of the second spectrum, two additional
components are found at 2998.7 eV and 2982.6 eV. In the first spectrum, the associated transition lines
are too weak to be distinguishable from statistical fluctuations. The two components existing in both
O-like peaks again agree exceptionally well. Just like in case of the N-like peak, it is the low-energy
tail which sets the two neutral peaks slightly apart from each other.

3.5 Line Identification

In order to identify the fitted spectral components with their corresponding transition lines, we will
make use of numerical calculations. This is necessary insofar as most of the fitted components are
blends of numerous spectral lines lying too close together to be resolved separately. There exist various
atomic codes for the calculation of all the atomic properties. In this thesis, the Flexible Atomic Code
(FAC), written by Ming Feng Gu (2004), is used for that purpose.

3.5.1 The Flexible Atomic Code

FAC is a free-to-use software package5 for the calculation of energy levels, radiative transition rates, the
cross sections of electron impact excitation and ionization, photoionization, and autoionization. Most
of the corresponding inverse processes are implemented as well. In order to find a basis of states, the
orbitals are determined through a Dirac-Fock-Slater iteration. The latter is a self-consistent method,
quite similar to the Hartree-Fock method described in section 2.3.2, but based on the Dirac equation
and hence fully relativistic (Gu, 2004). In each iteration, the Dirac equation has to be solved for a
certain potential. This is done by transforming the equation into a Schrödinger-like form and using
Numerov’s method to actually solve it (Gu, b). In the construction of the local central potential, which

4This is a set of ISIS functions and scripts provided by the Dr. Karl Remeis observatory in Bamberg, Germany. It is
available for download at http://pulsar.sternwarte.uni-erlangen.de/hanke/science/X-ray/ISIS/isisscripts.html

5It is available at http://sprg.ssl.berkeley.edu/labastro/. The download includes a documentation of several
unpublished papers and a manual.
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Figure 3.8: The two Ar spectra (top: Ar1, bottom: Ar2) with their single components and the resulting
residuals. The data is shown in black, the total spectral model is displayed by the solid red line. The
single components are illustrated by the dashed lines in random colors.
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Table 3.2: Comparison between the two spectra. The fitted line centers of all the identified spectral
components are assigned to the corresponding major peak.

Peak Ar1 [eV] Ar2 [eV] Difference [eV]

He w 3139.60+0.09
−0.08 3139.60+0.12

−0.10 0.00+0.14
−0.15

Li 3123.8+0.4
−0.6 3123.6+0.7

−0.9 0.2± 1.0

3113.63+0.07
−0.10 3113.57+0.09

−0.14 0.06+0.16
−0.14

He z 3104.15+0.07
−0.09 3104.17+0.09

−0.10 −0.02± 0.13

Be 3091.60+0.10
−0.13 3091.63+0.12

−0.14 −0.03± 0.18

3085.6+0.4
−0.5 3086.0+0.4

−0.5 −0.4± 0.7

B 3065.29+0.24
−0.20 3065.58+0.16

−0.24 −0.29+0.4
−0.26

3061.3+0.7
−0.6 3061.3+0.4

−0.6 0.0+1.0
−0.8

C 3044.8± 0.7 3044.0+0.8
−1.5 0.8+1.7

−1.1

3039.23+0.24
−0.23 3039.14+0.20

−0.40 0.1+0.5
−0.4

3033.7± 0.5 3033.2± 0.4 0.5± 0.7

N 3016.8+0.4
−0.6 3018.1± 0.5 −1.3+0.7

−0.8

3011.2± 0.4 3012.9+0.5
−0.6 −1.7+0.8

−0.7

3005.2± 0.8 3008.5+0.6
−0.7 −3.3± 1.1

O 2998.7+1.2
−1.0

2992.9± 0.6 2992.5± 0.6 0.4± 0.9

2988.9+0.5
−0.6 2989.1+0.5

−0.6 −0.2± 0.8

2982.6± 0.9

F-Ar 2970.3± 0.6 2970.2+0.5
−0.4 0.1± 0.8

2966.2+0.9
−1.0 2966.5+0.9

−0.8 −0.3+1.3
−1.4

2961.1+0.9
−1.0 2961.7+0.8

−0.7 −0.6+1.2
−1.3

2955.4+0.9
−1.0 2956.9+0.7

−0.6 −1.5+1.1
−1.3
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is involved in the later calculation of several physical processes, a fictitious averaged configuration can
be used instead of a single configuration. Since the actual potential felt by the electrons depends
on their configuration, the use of a single central potential leads to errors in the atomic structure.
Therefore, an additional potential is calculated for every single configuration group. The difference of
the obtained average energy values is then applied as a correction (Gu, a).
For the following computation of the radiative transition rates the single multipole approximation is
used. Also, all the other quantities of excitation and ionization can be calculated once the energy levels
are known. The accuracy with which the atomic structure can be stated amounts to a few eV for all
other than H-like ions, while the transition rates and cross sections are usually accurate to 10− 20 %.
In order to analyze the measured spectra, all the charge states from H-like to neutral argon were
considered in the calculations with FAC. All in all, three different configuration groups were defined
for each ionization state. The first one corresponds to the ground state, the second one has a hole in
the K-shell, while the third one is missing an electron in the L-shell. In all the configuration groups,
only the subshells belonging to l = s and l = p are allowed, given their accordance with the value of
n. The rates for radiative transitions between and within the configuration groups were calculated. In
addition, the cross sections for collisional excitation and ionization as well as the autoionization rates
were computed. For the sake of completeness, the cross sections for photoionization and its reverse
process, i.e., radiative recombination, were also calculated. With the collisional radiative model (crm)
module, FAC provides a possibility to simulate the spectra of optically thin plasmas. In a first step,
the data of the atomic states that should be included into the model are loaded. After that, the
considered processes are taken into account and some additional parameters can be defined. In our
case, the electron density and the energy distribution of the electron beam are specified. The former
is set to 1012 cm−3, while the latter is given by a Gaussian distribution with a width of 40 eV. Lastly,
the relative abundances of the different charge states are assigned. Since the initial conditions in the
ion trap are not known (see below) they were chosen to be all equal. Having gathered the needed data,
FAC employs an iterative linear equation solver to calculate the level population. In combination with
the transition rates, this provides the total line emissivity.
However, the final calculation of the line emissivity is fraught with two major problems. First of all,
the initial abundances in the trap are not known. Beyond that, FAC assumes the plasma to be in
equilibrium. Through the cyclic dumping of the trap, that might actually never be the case in our
experiment and we might have to deal with a transient plasma instead. Consequently, the calculation
of the level population lacks consistency and has to be treated with caution. There is nothing to
be done about these two issues, but since the main interest lies in the line energies of the strongest
lines, this problem should not bother us too much, assuming that the line emissivities are at least
rudimentally correct.
As a last point it has to be mentioned that, although the atomic data was calculated for all charge
states, only H-like to Ne-like ions could be included into the simulation of the spectra. The addition of
lower charge states to the model led to the level population having either physically unreliable solutions
or not being solvable at all. Depending on the initial abundances, some lines showed implausibly high
emissivities, the final abundances of various charge states had a negative value in equilibrium or the
iteration of the level population did not converge.

3.5.2 The Kα-lines of Argon

After the FAC calculation, the lines with the highest emissivities are selected and respectively assigned
to the Gaussian whose center is the closest to their transition energy. For all inspected lines, this
identification is shown in Table 3.3. Here, the upper and lower levels of every transition are also
denoted by the term symbols of jj coupling. In order to visualize the identification as well, the fitted
spectra are shown together with the theoretically predicted lines in Fig. 3.9 and Fig. 3.10. The entire
fit region is separated so that each panel shows one major peak of the spectrum. The fitted spectral
components are labeled with the element symbol corresponding to the dominant charge state in that
peak and, if necessary, with an additional number used to distinguish between them. In case of the
He-like lines, the notation of Gabriel (1972) is adopted. These labels correspond to the ones used in
Table 3.3. The FAC lines are plotted as colored vertical lines. Their emissivities are renormalized
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separately in every panel so that the strongest line matches the maximum of the respective peak.
Thereby, the ratio of the line emissivities lasts in each panel, but does not hold true for different ones.
Most of the FAC lines match quite well to one of the fitted components. However, the assignment
gets more difficult for the lower charge states. Here, some lines are so weak and blend so heavily that
the identification is a bit arbitrary, especially, given the accuracy of the calculations with FAC for the
transition energies. For the Gaussian labeled with F3, no strong lines are available. It results most
likely through blends of lines which belong to the even lower charged ions, i.e., N > 10, that were
not included into the plasma simulation. Yet, even if any atomic data was present for these ions, the
identification would still be random, as mentioned above.
The limited accuracy of the calculations with FAC can best be observed on non blending lines. For
instance, the He-like lines z (FAC: 3102.84 eV) and w (FAC: 3139.35 eV) show deviations of 1.32 eV
and 0.25 eV in comparison to the measured line centers. Hence, especially line z has a fairly large offset.
Nevertheless, both measured line centers agree exceptionally well with the well established reference
values of (Drake, 1988, line z: 3104.14 eV, line w: 3139.58 eV).
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Table 3.3: Identification of the fitted Gaussians with the strongest lines of the FAC simulation. The
first column shows the respective charge state. Columns 2-4 display the data of the FAC lines, while
columns 5 and 6 feature the labels (cf. figures 3.9 and 3.10) of the fitted spectral components and their
averaged energies. Column 7 shows the difference between the transition energies calculated with FAC
and the averaged energies of the measurement.

jj coupling Measurements
Ion FAC [eV] lower level upper level Labels Fit [eV] Difference [eV]
Ne 2953.8 1s22s22p2

1/2((2p3
3/2)3/23p3/2)0 (1s1/22s22p63p3/2)1 F4/F4 2956.2± 0.6 −2.4

Ne 2966.2 1s22s2(2p1/22p4
3/23p3/2)1 (1s1/22s22p63p3/2)1 F2/F2 2966.4± 0.7 −0.2

Ne 2966.3 1s22s2(2p1/22p4
3/23p3/2)2 (1s1/22s22p63p3/2)1 −0.1

Ne 2967.0 1s22s2(2p1/22p4
3/23p1/2)1 (1s1/22s22p63p3/2)1 0.6

Ne 2967.2 1s22s2(2p1/22p4
3/23s1/2)1 (1s1/22s22p63s1/2)0 0.8

Ne 2967.9 1s22s22p2
1/2((2p3

3/2)3/23p3/2)2 (1s1/22s22p63p3/2)1 1.5

F 2968.2 1s22s22p1/22p4
3/2 (1s1/22s22p6)1/2 1.8

Ne 2968.6 1s22s22p2
1/2((2p3

3/2)3/23p1/2)1 (1s1/22s22p63p3/2)1 F1/F1 2970.3± 0.4 −1.7

F 2970.4 1s22s22p2
1/2(2p3

3/2)3/2 (1s1/22s22p6)1/2 0.1

O 2984.0 1s22s22p2
1/2(2p2

3/2)0 (1s1/22s22p2
1/2(2p3

3/2)3/2)1 O2/O4 2985.8± 0.6 −1.8

O 2988.3 1s22s2(2p1/2(2p3
3/2)3/2)1 (1s1/22s22p2

1/2(2p3
3/2)3/2)2 O2/O3 2989.0+0.4

−0.5 −0.7

O 2989.7 1s22s22p4
3/2 (1s1/22s22p1/22p4

3/2)1 0.7

O 2990.1 1s22s22p2
1/2(2p2

3/2)2 (1s1/22s22p2
1/2(2p3

3/2)3/2)2 1.1

O 2990.2 1s22s2(2p1/2(2p3
3/2)3/2)1 (1s1/22s22p1/22p4

3/2)1 1.2

O 2991.5 1s22s2(2p1/2(2p3
3/2)3/2)1 (1s1/22s22p1/22p4

3/2)0 O1/O2 2992.7± 0.5 −1.2

O 2991.9 1s22s22p2
1/2(2p2

3/2)2 (1s1/22s22p1/22p4
3/2)1 −0.8

O 2992.8 1s22s2(2p1/2(2p3
3/2)3/2)2 (1s1/22s22p2

1/2(2p3
3/2)3/2)1 0.1

Be 3000.5 1s2(2p2
3/2)2 (1s1/22s22p3/2)2 N3/O1 3002.0+0.8

−0.7 −1.5

Be 3004.2 1s2(2p1/22p3/2)2 (1s1/22s22p3/2)1 N3/N3 3006.9± 0.6 −2.7

N 3007.1 1s22s2(2p3
3/2)3/2 ((1s1/22s22p1/2)1(2p3

3/2)3/2)5/2 0.2

N 3010.1 1s22s2(2p3
3/2)3/2 ((1s1/22s22p1/2)1(2p3

3/2)3/2)3/2 N2/N3 3009.9+0.4
−0.5 0.2

N 3010.7 1s22s2(2p1/2(2p2
3/2)0)1/2 ((1s1/22s22p1/2)1(2p3

3/2)3/2)3/2 N2/N2 3012.1± 0.4 −1.4

N 3010.9 1s22s2(2p3
3/2)3/2 ((1s1/22s22p1/2)1(2p3

3/2)3/2)1/2 −1.2

Continued on next page
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Table 3.3 – continued from previous page
jj coupling Measurements

Ion FAC [eV] lower level upper level Labels Fit [eV] Difference [eV]
N 3011.1 1s22s2(2p1/2(2p2

3/2)2)3/2 (1s1/22s22p2
1/2(2p2

3/2)2)5/2 −1.0

N 3011.5 1s22s2(2p1/2(2p2
3/2)0)1/2 ((1s1/22s22p1/2)1(2p3

3/2)3/2)1/2 −0.6

N 3013.1 1s22s2(2p1/2(2p2
3/2)2)3/2 ((1s1/22s22p1/2)0(2p3

3/2)3/2)3/2 1.0

N 3013.6 1s22s2(2p1/2(2p2
3/2)2)5/2 ((1s1/22s22p1/2)1(2p3

3/2)3/2)5/2 1.5

N 3013.8 1s22s22p2
1/22p3/2 (1s1/22s22p2

1/2(2p2
3/2)2)3/2 1.7

N 3013.9 1s22s2(2p1/2(2p2
3/2)2)3/2 (1s1/22s22p2

1/2(2p2
3/2)0)1/2 1.8

N 3016.4 1s22s2(2p3
3/2)3/2 1s1/22s22p4

3/2 N1/N1 3017.5± 0.4 −1.1

N 3016.5 1s22s2(2p1/2(2p2
3/2)2)5/2 ((1s1/22s22p1/2)1(2p3

3/2)3/2)3/2 −1.0

N 3017.8 1s22s22p2
1/22p3/2 ((1s1/22s22p1/2)1(2p3

3/2)3/2)1/2 0.3

C 3033.4 1s22s2(2p2
3/2)2 ((1s1/22s22p1/2)1(2p2

3/2)2)3 C3/C3 3033.5± 0.4 −0.1

C 3034.5 1s22s2(2p2
3/2)0 (1s1/22s2(2p3

3/2)3/2)1 1.0

C 3034.8 1s22s2(2p1/22p3/2)1 ((1s1/22s22p1/2)0(2p2
3/2)2)2 1.3

C 3036.1 1s22s22p2
1/2 (1s1/22s22p2

1/22p3/2)1 2.6

C 3037.79 1s22s2(2p2
3/2)2 ((1s1/22s22p1/2)1(2p2

3/2)2)1 C2/C2 3039.19+0.16
−0.24 −1.40

C 3037.79 1s22s2(2p1/22p3/2)2 ((1s1/22s22p1/2)1(2p2
3/2)2)2 −1.40

C 3039.27 1s22s2(2p1/22p3/2)1 ((1s1/22s22p1/2)1(2p2
3/2)2)1 0.08

C 3039.52 1s22s2(2p2
3/2)2 (1s1/22s2(2p3

3/2)3/2)2 0.33

C 3040.21 1s22s2(2p2
3/2)2 ((1s1/22s22p1/2)1(2p2

3/2)0)1 1.02

C 3040.49 1s22s22p2
1/2 ((1s1/22s22p1/2)1(2p2

3/2)2)1 1.30

Li 3042.9 1s22p3/2 1s1/22s2 C1/C1 3044.4+0.6
−0.9 −1.5

C 3043.4 1s22s2(2p1/22p3/2)2 (1s1/22s2(2p3
3/2)3/2)1 −1.0

Li 3046.0 1s22p1/2 1s1/22s2 1.6

B 3060.0 1s22s22p3/2 ((1s1/22s22p1/2)12p3/2)5/2 B2/B2 3061.3± 0.5 −1.3

B 3061.9 1s22s22p3/2 ((1s1/22s22p1/2)12p3/2)1/2 0.6

B 3062.7 1s22s22p1/2 ((1s1/22s22p1/2)12p3/2)3/2 1.4

B 3064.66 1s22s22p1/2 ((1s1/22s22p1/2)12p3/2)1/2 B1/B1 3065.44+0.15
−0.16 −0.78

B 3065.03 1s22s22p3/2 (1s1/22s2(2p2
3/2)2)3/2 −0.41

B 3067.82 1s22s22p1/2 (1s1/22s2(2p2
3/2)2)3/2 2.38

B 3068.99 1s22s22p3/2 (1s1/22s2(2p2
3/2)0)1/2 3.55

Continued on next page

34



Table 3.3 – continued from previous page
jj coupling Measurements

Ion FAC [eV] lower level upper level Labels Fit [eV] Difference [eV]
Be 3082.3 1s2(2s1/22p3/2)2 (((1s1/22s1/2)12p1/2)1/22p3/2)1 Be2/Be2 3085.8+0.3

−0.4 −3.5

Be 3083.1 1s2(2s1/22p3/2)2 (((1s1/22s1/2)12p1/2)3/22p3/2)3 −2.7

Be 3085.2 1s2(2s1/22p3/2)2 ((1s1/22s1/2)1(2p2
3/2)2)2 −0.6

Be 3085.3 1s2(2s1/22p1/2)0 (((1s1/22s1/2)12p1/2)1/22p3/2)1 −0.5

Li 3086.4 1s22s1/2 ((1s1/22s1/2)12p1/2)1/2 0.6

Li 3087.2 1s22s1/2 ((1s1/22s1/2)12p1/2)3/2 1.4

Li 3089.36 1s22s1/2 ((1s1/22s1/2)12p3/2)5/2 Be1/Be1 3091.62+0.08
−0.10 −2.26

Be 3091.57 1s22s2 (1s1/22s22p3/2)1 −0.05

He 3102.84 1s2 (1s1/22s1/2)1 He z/He z 3104.16+0.06
−0.07 −1.32

Li 3111.87 1s22s1/2 ((1s1/22s1/2)02p1/2)1/2 Li2/Li2 3113.60+0.06
−0.09 −1.73

Li 3113.59 1s22s1/2 ((1s1/22s1/2)02p3/2)3/2 −0.01

He 3122.7 1s2 (1s1/22p1/2)1 Li1/Li1 3123.7+0.5
−0.6 −1.0

Li 3124.6 1s22s1/2 ((1s1/22s1/2)12p3/2)1/2 0.9

He 3125.4 1s2 (1s1/22p3/2)2 1.7

Li 3126.9 1s22p3/2 (1s1/2(2p2
3/2)0)1/2 3.2

He 3139.35 1s2 (1s1/22p3/2)1 He w/He w 3139.60+0.08
−0.07 −0.25
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Figure 3.9: The fitted Ar1 spectrum. The data is shown in black, the total spectral model is displayed
by the solid red line. The single components are illustrated by the dashed lines in random colors, the
vertical lines signal the theoretical predictions of FAC.
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Figure 3.10: The fitted Ar2 spectrum, analog to figure 3.9.

37



Chapter 4

Conclusion

In this thesis the Kα-lines of ionized argon have been analyzed. The ions were produced, contained, and
excited in an electron beam ion trap (EBIT) – strictly speaking the high energy variant SuperEBIT – at
the Lawrence Livermore National Laboratory (LLNL). The resulting emission lines were recorded with
the EBIT calorimeter spectrometer (ECS). In order to calibrate the detector, the H-like Lyman- and the
He-like K-series of suitable elements were used due to their well known transition energies. In our case,
calibration spectra of argon and sulfur have yielded the best result for the energy range of interest.
After determining the detector’s resolution, the calibrated spectra were fitted with correspondingly
broad Gaussian lines. In addition, the plasma in the EBIT was simulated with the Flexible Atomic
Code (FAC). The strongest lines of this simulation were then assigned to the fitted line centers. The
theoretical energy values were compared with the ones coming from the measurement. For most lines,
the difference was below two electron volts.
The identification of the measured line centers through the calculations with FAC are accompanied by
two problems. On the one hand, the simulation does not reflect the actual situation. Because of the
unknown initial charge balance in the ion trap, our ansatz is not self-consistent. Furthermore, neither
the non-equilibrium state of the plasma – the ion trap is dumped time after time – nor all the possible
charge states could be included to the FAC model. Consequently, the line emissivities show a certain
amount of uncertainty. On the other hand, the accuracy of energy levels calculated with FAC lies in the
area of a few electron volts. This might pose a problem for the unambiguity of the line identification
as soon as heavily blending lines have to be assigned to the fitted spectral components. Regarding this
issue, measurements with a crystal spectrometer could add clarity as the better resolution will make
more lines resolvable. Bruhns (2005) presents such high-resolution measurements of the He-like and
some of the Li-like transition lines of argon.
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