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Abstract

There are two important limiting cases of angular momentum coupling that are very
important for atomic spectra: LS- and jj-coupling and there are several atomic
structure calculating codes like FAC, HULLAC, AUTOSTRUCTURE. I wrote a
program that produces all LS- and jj-coupling term symbols, sorts them by Hund’s
rules as good as possible and so delivers a tool for the comparison of those codes
amongst each other and thus for an enhanced comparison of spectroscopic data with
numerical results that are of theoretical nature. The program keeps track of the
parental history of a term symbol, so that there are no multiple occurrences of a term
symbol. The parental histories of the LS-coupling term symbols are chosen to be in
agreement with the data of Palmeri et al. (2008) and those of the jj-coupling term
symbols are chosen to be in agreement with the energy structure output of FAC.
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1. Introduction: The need of mapping

LS- and jj-coupling term symbols

An important task in astrophysics is the interpretation of spectra of celestial objects.
Spectra are a treasure of information about elemental abundances, processes in the
stellar interior and exterior and indirectly about nearly every aspect of the universe
on large or small scales. In order to take advantage of this treasure one has to know
what the spectrum is expected to look like. The theoretical approach of reproducing a
spectrum is dominated by one fact: an atom is a many-body system.
The problem now is that even the three-body problem is not solvable analytically and
even solving the non-relativistic Schrödinger equation numerically is difficult. For this
reason the appropriate handling of the problem using the relativistic Dirac equation
(Dirac, 1928) for a many-body problem in order to yield the energy levels is a very
difficult task. But luckily there are many relativistic corrections possible such as spin-
orbit coupling or the treatment of the jitter movement as a small perturbation to the
Schrödinger equation and therefore one could obtain qualitative “term symbols” de-
scribing the energy levels (Reinhold, 2006). Transitions between those levels lead to
absorption and emission lines in the spectra (Fließbach, 1991). To generate labels giving
a somehow unique description for those levels, the way the angular momenta and spins
of the electrons couple is very important. The levels in angular momentum coupling
are called term symbols and there are two important limiting cases for light and heavy
atoms: LS- and jj-coupling (Demtröder, 2007).
This is not the whole story. For a proper description of a measured spectrum more ingre-
dients are necessary: the broadening, probability amplitudes for the transition between
the levels, modeling of the ionisation and (precise) quantitative (not just qualitative
as delivered by the mere term symbol approach) information about the energy levels
labeled by the term symbols (Bransden and Joachain, 2003). Therefore, the Dirac equa-
tion must be solved after all. This is the point when and the reason why several “atomic
codes” were developed. Examples are HULLAC (Bar-Shalom et al., 2001), FAC (Gu,
2003, 2004) or AUTOSTRUCTURE (Badnell, 2011).
At this point the problem this thesis tries to solve rises. These codes produce and assign
energies to term symbols in the LS-, jj- or some intermediate coupling scheme. But if
one now wants to compare results of one code – mind the numerical character of the
codes – with results of another code and with a measured spectrum, there is the problem
of how to compare LS- and jj-coupling levels. It is not possible to pursue the direct
assignment because the states in one scheme are linear combinations of states in the
other (Condon and Shortley, 1970). But the idea for providing a simple mapping is to
produce all terms in both coupling schemes, then sort them for energy by Hund’s rules
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and assign the xth row in one list to something close to the xth row in the other list.
This is what is done by the program written as part of this thesis. It delivers a dictionary
for the translation (in means of comparability, not of unique identification) of the LS-
coupling term symbols to the jj-coupling term symbols language and hence delivers a
small contribution to the whole process of making the best out of the treasure of spectra.
Inter alia this goal was attempted because of a positive evidence for the possibility to
assign the languages unambiguously found in a book of Gerhard Herzberg (1937). But
the main reason is to be able to compare FAC results with AUTOSTRUCTURE in
future examinations.
In the following sections the combinatoric theory behind the program, the usage, and
the output of the program are discussed and presented assuming a basic knowledge of
quantum mechanics. Nevertheless I tried to go through the important thoery behind
angular momentum coupling and prepended a recapitulation of the basic ideas and the
basic formalism used in physics to describe an atom.
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2. Theoretical basics of LS- and
jj-coupling

“If ... only one sentence passed on to
the next generations of creatures,
what statement would contain the
most information ...? I believe it is
the atomic hypothesis ... that all
things are made of atoms - little
particles that move around in
perpetual motion, attracting each
other ..., but repelling upon being
squeezed into one another.”

Richard Feynman

2.1. Basic quantum mechanics

Feynman’s subsequent sentence to the sentences in the quote above was: “In that one
sentence, you will see, there is an enormous amount of information about the world, if
just a little imagination and thinking are applied...” (Feynman et al., 1963). This chapter
has the goal to apply a little bit of that imagination and thinking to the atomic hypothesis
and hence explain the necessary theory behind the combinatorial investigation of the
presented work. Electrical charges were those “little” things repelling and attracting
each other. But what are charges, how do they interact and form an emergent structure
called atom? How is it realized that there are different states? How do we label those
states? What are those differences and how could they be analyzed quantitatively? The
following approach tries to answer these questions starting (nearly) from scratch, but
without getting lost (too much) in details. It is just a recapitulation of the relevant
theory to get a more precise idea about the justification for and the formalism used in
the subsequent work. The description starts more dilute and is meant to get more dense
in proportion as it comes closer to the LS- and jj-coupling.

2.1.1. Schrödinger and Dirac equation

The basic tool to describe our physical world mathematically is a tensor field ψ(xµ),
where xµ are the three space dimensions (µ = 1, 2, 3) and the time dimension (µ = 0).
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A field is a multilinear and multidimensional array (Rebhan, 2010). Therefore, a field is
the assignment of a scalar, a vector or in general a tensor locally to a point in spacetime,
where W (∋ xµ) is the spacetime or the world set and F describes the properties of our
physical reality as we see it - the field set (Peskin and Schroeder, 1995):

ψ : W → F . (2.1)

The spacetime assumed here is the four dimensional Minkowski spacetime (sgn(1, 3)).
Hence the examination is relativistic and each resulting constitutive equation has to be
Lorentz invariant. Their solutions have to be a representation of at least the Lorentz
group O(1, 3) (the group of all isometries of the spacetime W and thus an external
symmetry) and additionally of other symmetry groups - either those that are correlated
to the field set or those that arise from the symmetries of the examined problem. Both
symmetries are gauge symmetries acting on F and thus they are inner symmetries
(Rebhan, 2010).
Due to the Noether theorem there is a constant of motion correlated to each symmetry.
E.g., translational symmetry ↔ four-vector momentum pµ (energy E and momentum

~p), rotational symmetry ↔ angular momentum ~L (Altland and Simons, 2006).
There are discrete phenomena at a sufficiently small scale and we have to take account
of them. Discrete values arise in mathematics as a spectrum of eigenvalues of an opera-
tor. So a natural and successful way to describe those discrete phenomena is to assign
operators to the observable (field) we look at. This is done by expanding the expected

solution as a sum of plane waves e~x·
~k−ωt, which leads to the following quantization rules1

(Fließbach, 1991):

E → Ê = −~ ∂t
~p → ~̂p = ~ ~∇

~x → ~̂x = ~x

~L → ~̂L = ~̂x× ~̂p = ~ ~x× ~∇,

(2.2)

and the field itself:

ψ → ψ̂. (2.3)

One gets an operator field ψ̂(xµ). The first assignment is called first quantization, while
the quantization of the field itself is called second quantization. The hats that mark
operator fields are suppressed in this thesis, because the effects that arise from the field
also being an operator are not important for the subsequent theory. Nevertheless it is
an important fact and should be mentioned for the sake of completeness.
To describe the dynamic and static behavior of the system, an equation of motion has
to be derived. This is done by formulating a Lagrange density L (ψ, ∂ψ) and obtaining
the so called Euler-Lagrange equations by extremalizing the action (Rebhan, 2010)

S =

∫

d4x L , (2.4)

1The Planck constant ~ and the speed of light c are set to one and are therefore supressed in this
thesis. No value in any unit system has to be calculated absolutely.
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that is kept by the Hamiltonian principle

δS
!
= 0, (2.5)

and then evaluating the Euler-Lagrange equations2 for each field:

∂µ
∂L

∂(∂µψ)
−
∂L

∂ψ
= 0. (2.6)

Due to the need to be a representation of O(1, 3), the electron field has to be a spinor,
a four component array with a special transform behavior. That implies a spin of 1

2
3,

and due to gauge invariance, where the gauge field is the electro-magnetic field Aµ, the
easiest free Lagrange density (Feynman, 1986) for an electron field is

L = ψ̄( /D −m)ψ −
1

4
FµνF

µν , (2.7)

where m is the mass of the fermion, Dµ = ∂µ + ieAµ the covariant derivation and
Fµν = − i

e
[Dµ, Dν ] the field strength tensor (Rebhan, 2010), using Feynman’s slash

notation (Feynman, 1986) /a = aµγ
µ with γµ being the Dirac matrices4.

The Euler-Lagrange equation with respect to the field ψ is the same as the Dirac equation
with an additional term on the right side describing the electrodynamic effects, of which
the description is based upon the field strength tensor Fµν ,

(iγµ∂µ −m)ψ = eγµA
µψ (2.8)

and the Euler-Lagrange equations resulting out of the variations with respect to the
gauge fields Aµ are

∂µF
µν = eψ̄γνψ. (2.9)

Those four equations are basically Maxwell’s equation involving the field ψ in the mini-
mal way that still facilitates Lorentz-invariance of the whole theory. This set of equations
is also referred to as the basic equations of quantum electro dynamics (QED) (Feynman,
1986).
The next step would be to formulate a set of many-body Maxwell-Dirac equations for
atoms that are such many-body systems. But because even the simplest coupled three-
body problem cannot be solved analytically (Bransden and Joachain, 2003), except for
some physically meager special solutions, a clever method is necessary to be able to deal
with a fruitful theoretical description of the atom. Nevertheless these equations are very
important and those systems of relativistically correct equations of motions are solved
by some atomic codes such as FAC (Gu, 2003, 2004).
The idea to get more insights is now to separate a non-relativistic equivalent of the Dirac
equation, the Schrödinger equation, and add relativistic and quantum field theory (QFT)

2The Euler-Lagrange equations are the equations of motion for every field that is varied via 2.5.
3So particles described by spinors are fermions in contrast to bosons that have an integer spin (Rebhan,
2010).

4The Dirac matrices are the tensor representation of a Clifford algebra (Jagannathan, 2010).
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effects as small perturbations (Bransden and Joachain, 2003; Fließbach, 1991). The
Schrödinger equation was called “a non-relativistic equivalent” to the Dirac equation,
because it is not just the limiting case obtained by the limit speed of light c→ ∞. The
Dirac equation acts on algebraically distinguished objects, the spinors, and the field ψ
in the Schrödinger equation is only a scalar Rebhan (2010).
Another way to get the Dirac equation is to quantize5 the relativistic dispersion relation

E =
√

p2 +m2
0, (2.10)

where p2 =
∑3

i=1 p
2
xi is the square of the total momentum and m0 is the rest mass

(Rebhan, 2010). The square root in the expression leads to the algebraic structure of a
Clifford Algebra and therefore to the Dirac matrices and the spinors instead of simple
scalar field functions.
Instead now the non-relativistic counterpart

E =
p2

2m
(2.11)

can be quantized easily yielding the free Schrödinger equation (Fließbach, 1991)

Êψ = i∂tψ =
p̂2

2m
= −

1

2m
~∇2ψ. (2.12)

The operator that has the energy as its eigenvalue is commonly denoted by Ĥ and is
called Hamilton operator. Adding the potential energy operator V̂ on the right side6

yields the time-dependent Schrödinger equation (Fließbach, 1991):

Ĥψ = i∂tψ =

(

−
1

2m
~∇2 + V̂

)

ψ. (2.13)

This is the non-relativistic equation of motion for a particle with mass m in a potential
V . The basic interpretation of the Schrödinger equation is that the solutions for the
field ψi, which are eigenvalues in a vector space H, called Hilbert space, describe the
probability ρ(xµ) = |ψ|2, that the system is in that state. Those functions have complex
values and form an orthonormal base taking the normalization

∫

d4xρ
!
= 1, (2.14)

that is common for the interpretation as a probability distribution (Feynman et al.,
1963). The Hilbert space H possesses a dual space H∗. Vectors in this space can act on
vectors in the original H by multiplication and integration over the whole W . Vectors

5That means to use the quantization rules.
6Here are the contributions to the energy.
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in H are called bra and vectors in H
∗ ket7 (Rae, 2002). The former are expressed by

〈ψ| and the latter by |ψ〉. So the scalar product is written in the form

〈ψi| ψj〉 ≡ ψi · ψj =

∫

W

d4x ψ∗
i ψj . (2.15)

The indices i and j express different solutions, hence different states. Their orthonor-
mality is now easily expressible as

〈ψi| ψj〉 = δij . (2.16)

The static Schrödinger equation is the equation of “motion” that describes stationary
states8. It has the simple form

Enψnα = Ĥψnα, (2.17)

where α denotes the possibility of degeneracy: different energies are possible (n), but
as well the same energy eigenvalue En is possible for more states. So these states form
a degenerated subspace of the whole Hilbert space. Those different states belonging to
the same En are numbered by α.
An operators Ô belonging to an observable has to be self adjoint (hermitian) to ensure
reality of their eigenvalues, formal:

Ô = Ô†. (2.18)

The matrix elements of an operator are

Oij = 〈ψi|O |ψj〉 . (2.19)

As in every vector space the dyadic of two vectors (|ψi〉, |ψj〉) is an operator Pij projecting
into the subspace that is spanned by these vectors:

Pij = |ψi〉 ⊗ 〈ψj | = |ψi〉 〈ψj | (2.20)

and summing over the projection into all subspaces spanned by the single state vectors
has to yield the identity

1 =
∑

i

|ψi〉 〈ψi| , (2.21)

in the case of a discrete base, or

1 =

∫

|ψ〉 〈ψ| , (2.22)

in the case of a continuous base (Fließbach, 1991).

7This nomenclature is called Dirac’s bracket (bra-ket) notation (Fließbach, 1991).
8This is a little bit confusing, but in stationary states ψ is still time dependent. Just Ĥ is meant
to be time independent and with H̄ also its eigenvalues En, where n numbers different stationary
solutions of the time independent Schrödinger equation. ψ can be multiplied by a time dependent
phase. But the physically important observable ρ is time independent as well.
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The next step is to describe many bodies simultaneously using a many-body wave func-
tion Ψ. For the Fermionic electrons the antisymmetry (with respect to the exchange
of single electron states) has to be ensured, leading to the so called Slater determinant
(Bransden and Joachain, 2003)

Ψ(xµ1 , . . . , x
µ
N) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(x
µ
1 ) ψ2(x

µ
1 ) . . . ψN (x

µ
1 )

ψ1(x
µ
2 ) ψ2(x

µ
2 ) . . . ψN (x

µ
2 )

...
...

. . .
...

ψ1(x
µ
N) ψ2(x

µ
N ) . . . ψN (x

µ
N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.23)

where the products between the single particle states is the tensor product ⊗ and the
lower right index now denotes not different single particle eigenfunctions as before but
different particles’ coordinates and wave functions. The antisymmetry

Ψ(ψ1, . . . , ψi, . . . , ψj , . . . , ψN) = −Ψ(ψ1, . . . , ψj , . . . , ψi, . . . , ψN) (2.24)

ensures the Pauli exclusion principle

Ψ(ψ1, . . . , ψi, . . . , ψi, . . . , ψN ) = −Ψ(ψ1, . . . , ψi, . . . , ψi, . . . , ψN ) = 0. (2.25)

It says that a many-body wave function must vanish if there are two particles in the
same state; or short in the case of electrons: there cannot be two electrons with the
same quantum numbers (Feynman et al., 1963).
The last very important relation that has to be introduced is the Heisenberg uncertainty
principle. If the mean quadratic deviation of the observable that is linked to an operator
Ô is defined as

(

∆Ô
)2

=

〈

(

Ô −
〈

Ô
〉)2

〉

, (2.26)

using the common notation for an operator’s expectation value
〈

Ô
〉

,

〈

Ô
〉

≡ 〈ψ| Ô |ψ〉 (2.27)

the following relation emerges by straight forward calculation:

(

∆Ô1

)2 (

∆Ô2

)2

≥

〈

i[Ô1, Ô2]
〉

4
, (2.28)

where [A,B] ≡ AB−BA is the commutator. This is the uncertainty principle (Fließbach,
1991). It is not a direct consequence of the Schrödinger equation, rather it is related to
the algebraic properties of operators and their ability not to commute9.

9“Uncertainty” is also a property that is deeply linked to the fact that ψ behaves like a damped
wave and the natural link between the frequency components of a function delivered by a Fourier
transform and the untransformed function (Ashcroft and Mermin, 1976).
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After the many-particle wave function is constructed, a whole system Hamiltonian Ĥtot

has to be written down10, probably involving relativistic effects as perturbative extra
terms. Finally the Schrödinger equation of the whole system has to be solved.
But before the complex many-body problem describing arbitrary atoms is encountered
I will perform a closer look at the analytically solvable one-body problem. This one-
body problem of an electron and a nucleus is the hydrogen atom described in the next
section11.

2.1.2. H-Atom

The hydrogen atom in its neutral state consists of a nucleus (proton and possibly neu-
trons) and an electron. The nucleus of all atoms can be seen as very massive12. The
description takes place in the rest frame of the nucleus. Then the Hamiltonian of the
electron in the electro-static potential is

Ĥ = Ĥkin + Ĥpot = −
1

2me

~∇2 − e2
1

r
, (2.29)

where r is the distance in the three space dimensions, leading to the static Schrödinger
equation

Enψα(x
µ) =

(

−
1

2mµ

~∇2 − e2
1

r

)

ψα (x
µ) . (2.30)

mµ is the reduced mass that arises from the change in the center of mass rest frame that
is nearly the rest frame of the proton and so mµ ≈ me the electron mass. To solve the
equation the wave function is separated into a radial part Rnα(r) (only dependent on
r) and an angle dependent part Ynβ(θ, φ), where θ and φ are the polar and azimuthal
angle of spherical coordinates (Bransden and Joachain, 2003). Additionally, the whole
equation is expressed in spherical coordinates involving the angular momentum opera-
tor that is hidden in the Laplace operator ∆ = ~∇2 expressed in spherical coordinates
(Fließbach, 1991):

EnRnα(r)Ynβ(θ, φ) =

(

−
1

2µ

1

r2
∂

∂r
r2
∂Rnα(r)

∂r
− L̂2Rnα(r)−

e2

r
Rnα(r)

)

Ynβ(θ, φ) (2.31)

The angular momentum operator has some very important eigenvalues and eigenfunc-
tions. The eigenvalues of its square L̂2 are

L̂2Ylml
= l(l + 1)Ylml

(2.32)

10In the following the “tot” in the index of the total system Hamiltonian Ĥtot is skipped, because
always the total system is examined; even in the case of just the one electron in hydrogen: if there
is only one, only one is the total system.

11It is conceptionally a two-body problem, but it can be translated into a one-body problem.
12This fact becomes very important for ions with more than one electron, because due to this relatively

high mass in comparison to the electron mass the motion of the core can be neglected and this is a
big step in the process of reducing the complexity of the problem. In the case of the hydrogen atom
this assumption is not necessary.
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and the eigenvalues of its z-component

L̂zYlml
= mlYlml

, (2.33)

where l is limited to integer values

l = 0, 1, 2, 3, . . . (2.34)

and the associated ml to
ml = 0,±1,±2,±3, . . . ,±l. (2.35)

Ylml
, the so called spherical harmonics (Semendjajew, 2008), are the common eigenfunc-

tions of L̂2 and its z-component L̂z:

Ylmz
(θ, φ) =

√

2l + 1

4π

√

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ, (2.36)

including the associated Legendre polynomials

Pm
l = (−1)m(1− x2)

m
2
dm

dxm
(Pl(x)) , (2.37)

themselves again including the “normal” Legendre polynomials

Pl(x) =
1

2ll!

dl

dxl
[

(x2 − 1)l
]

. (2.38)

The last equation is called Rodrigues’ formula (Strang et al., 2010).
That those two operators share the same eigenfunctions but different eigenvalues is due
to the fact that the square of the angular momentum operator L̂2 and its z-component
commute (Fließbach, 1991):

[

L̂2, L̂z

]

= 0, (2.39)

while the components among each other do not commute:
[

L̂i, L̂j

]

= iǫijkL̂k, (2.40)

where ǫijk is the total anti symmetric pseudo tensor (epsilon tensor). This implies that
due to the uncertainty principle 2.28 the square of the angular momentum operator
L̂2 can be measured exactly simultaneously with its z-component L̂z in spite of its x-

and y-component. This smearing in the xy-plane and fixing of the length (
√

L̂2) and
z-component forces the angular momentum vector to lie on a cone (see picture 2.2).
Now the suggestive nomenclature Ynβ in the H-atom static Schrödinger equation 2.31
becomes clear. The Ynβ can be chosen as the spherical harmonics Ynβ and so β is ml.

Evaluating their action on L̂2 in 2.31 yields

Ynβ(θ, φ)

(

EnRnα −

(

−
1

2µ

1

r2
∂

∂r
r2
∂Rnα(r)

∂r
− l(l + 1)Rnα(r)−

e2

r
Rnα(r)

))

= 0,

(2.41)
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where Ylβ can be canceled out13 This is leading to the equation for the radial part Rnα

(Fließbach, 1991)
d2u(r)

dr2
+ 2mµ

(

E − Veff
)

u(r) = 0, (2.42)

having inserted the substitution u(r) ≡ rRnα(r) and having combined the electric po-

tential −V (r) = e2

r
and − l(l+1)

2mµr2
to Veff. Solving and resubstituting the solution yields

Rnα(r) = Rnl(r) =
2

n2a
2
3
0

√

(n− l − 1)!

(n+ l)!

(

2r

na0

)l

e
− r

na0L2l+1
n−l−1

(

2r

na0

)

, (2.43)

this time involving the Laguerre polynomials La
b (x) defined as

La
b (x) =

k
∑

i=0

(a+ b)!(−x)i

(b− i)!(a+ i)!i!
. (2.44)

The number a0 = a0(ml) = 4π
mµl2

≈ 0.53 Å is called Bohr radius. It is the charac-

teristic length scale of the quantum mechanical Coulomb problem (Fließbach, 1991).
It corresponds to the radius rmin of the minimum of the effective potential Veff , where
rmin = l(l + 1)a0 (Reinhold, 2006).
n has to be an integer except zero:

n = 1, 2, 3, . . . (2.45)

and l is constrained to be smaller than n:

l = 0, 1, 2, . . . , n− 2, n− 1, (2.46)

where n is called main quantum number, l is called angular momentum quantum number,
ml is called magnetic quantum number.
Quantum numbers that commute with the Hamilton operator Ĥ of the system are called
good quantum numbers because they are time independent (Fließbach, 1991). Since L̂2

commutes with Ĥ,
[

L̂2, Ĥ
]

= 0, (2.47)

it follows that the Hamilton operator Ĥ as well as L̂2 and L̂z can be diagonalized
simultaneously and they can have the same eigenfunctions Ylml

.
Concluding the space related part of the eigenfunction of the Hydrogen problem is

ψnlml
(r, θ, φ) = Rnl(r)Ylml

(θ, ρ), (2.48)

13The separation approach is now justified, because the remaining equation for Rnα is free of any
angular dependence. Canceling means that the product on the left side has to yield zero and
because Ynml

6= 0 the large expression in parentheses has to be equal to zero.
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belonging to the eigenvalues of the Hamilton operator Ĥ , hence the energies En:

En = 〈ψnlml
| Ĥ |ψnlml

〉 = −
Ry

n2
, (2.49)

where Ry =
mµe

4

2(4π)2
≈ 13.6 eV is the Rydberg constant.

Using the non-relativistic Schrödinger equation has led to a degeneracy into states with
the same energy En, but many different angular momentum or magnetic quantum num-
bers l and ml. The degeneracy belonging to the different values of l is lifted when solving
the relativistic Dirac equation or if additional terms correcting the non-relativistic na-
ture of the Schrödinger equation towards relativistic correctness are included (Bransden
and Joachain, 2003). The degeneracy due to ml is based on the spherical symmetry of
the Hydrogen atom an therefore of the Hydrogen problem. This degeneracy can be lifted
if an external magnetic field is applied, selecting a favorite direction and hence making
the projection in the arbitrarily chosen z-direction important14 (Feynman et al., 1963).
Another consequence of the usage of the non-relativistic Schrödinger equation is the
neglecting of the spin, which is a relativistic phenomenon. It has to be introduced
manually. One has to add

Ŝ =
1

2





σ1

σ2

σ3



 , (2.50)

the spin operator, to the set of operators describing observables, where σi(i = 1, 2, 3)
are the Pauli matrices. Ŝi measures the spin in i-direction (now i = x, y, z). A very
important behavior of the spin is, that the eigenvalues and eigenfunctions of and the
spin operator Ŝ itself behaves like the angular momentum operator L̂. Thus all the
relations found to be true for L̂ are also true for Ŝ. They can be written as if there is a
Ŝ instead of L̂ and s instead of l. The spin wave function is again a vector in a vector
space. This vector space is called Hs (Fließbach, 1991). States that are space and spin
describing states are composed by multiplying the space wave function tensorially with
the spin wave function ψsms

:

|nlmlsms〉 ≡ |nlmlms〉 ≡ |ψnlmlms
〉 ≡ ψnlmlms

≡ ψnlm ⊗ψsms
≡ |ψnlm〉 ⊗ |ψsms

〉 . (2.51)

The denotation of the spin quantum number s is unimportant, because all electrons have
s = 1

2
. Since all electrons have the same s, states differ from other states in no case by

means of s. Thus s = 1
2
delivers no helpful information it is omitted when referring to

the electron quantum numbers. The important quantum number here – to distinguish
states – is ms = ±1

2
, the magnetic spin quantum number and so this quantum number

is given when describing a state of an electron. This issue is expressed by the first
equivalence in 2.51.
The one-electron stationary states ψnlml

are called orbitals and due to the analytically
unseparability of the many-body problem they are an important tool in the approxima-
tion of the many-body problem (Reinhold, 2006).

14Most likely this caused the name magnetic quantum number m.
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2.1.3. Multi-electron systems

Atoms that are the business of this thesis are many-body systems. The goal is to
describe a system that consists of a positively charged core surrounded by negatively
charged electrons. Neglecting spin, other relativistic and QFT effects, the kinetic en-
ergies, electromagnetic interactions of all electrons with the core have to be considered
(first sum in Ĥ below). The mutual electromagnetic interactions of all electrons with
each other, with their distances rij = |ri−rj |, also need to be taken into account (second
sum). The full Hamiltonian becomes







N
∑

i=1

(

−
1

2
~∇2

x
µ
i
−
Ze

ri

)

+
N
∑

i,j=1
i<j

e2

rij






Ψ(xµ1 , . . . x

µ
N) = EΨ(xµ1 , . . . x

µ
N ), (2.52)

where Ψ is the antisymmetric many-particle wave function constructed in 2.23.
In order to be able to perform perturbation theory, the Hamiltonian of a many-electron
atom is partitioned in an unperturbed part containing the experience of a mean field
potential Vmean instead of the complex coupling producing mutual coupling. This part
reads Ĥmean and the second part contains the rest of the terms of the full Hamiltonian
(Bransden and Joachain, 2003) Ĥrest. Thus

Ĥ = Ĥmean + Ĥrest, (2.53)

where

Ĥmean =
N
∑

i=1

ĥi, (2.54)

with the single electron Hamilton operator

ĥi = −
1

2
~∇2

x
µ
i
+ Vmean(x

µ
i ), (2.55)

and

Ĥrest =
N
∑

i,j=1
i<j

e2

rij
−

N
∑

i=1

[

Ze

ri
+ V (ri)

]

, (2.56)

is the Hamiltonian in the mean field approximation (Reinhold, 2006). The advantage of
this splitting is that now the first part Ĥmean is solvable in the same way the hydrogen
atom was solved in the last section and the second sum (and the term leading to angular
momentum coupling in the next section) can be treated as perturbations. Whether they
are small enough for this approach to be a successful description of the atom depends
on the size of the atom and will determine which coupling scheme is the better choice
(Bransden and Joachain, 2003).
Now i is the index of the electrons. The mean field related part

ĤmeanΨmean = En,meanΨmean (2.57)
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can be solved using a separation ansatz

Ψmean = ψ1ψ2 . . . ψN , (2.58)

possessing the solutions
ψi = ψnilimli

. (2.59)

This approach leads to the incorrect, since depending on the mean field approximation
and the neglect of relativistic and QFT effect, picture that electrons in a many-electron
system are having the same quantum numbers like the one electron in the case of hydro-
gen and that those electrons “fill” the possible orbitals that hydrogen offers his electron
to be in15. Adding an electron to the atom changes the whole system and not just fills
the structure that the atom has before the electron is added.
The term Ĥrest is neglected here, because the perturbation theoretical treatment leads to
a correction that is unimportant. But one important difference in the case of the mean
field potential Vmean is that the degeneracy due to li is omitted while the absence of the
distinction of one direction still leaves the degeneracy with respect to mli (Bransden and
Joachain, 2003).

2.2. Angular momentum coupling

The last step in order to describe angular momentum coupling is turning on the so called
spin-orbit interactions

Ĥs−o =
N
∑

i=1

1

2mµ

1

rij

dVmean(ri)

dri
~̂li · ~̂si, (2.60)

where ~̂li is the angular momentum operator of the electron number i and ~̂si the spin
operator of the same electron.
The Hamiltonian including angular momentum therefore reads (Bransden and Joachain,
2003)

Ĥ = Ĥmean + Ĥrest + Ĥs−o. (2.61)

A to a certain extent misleading comparison is the picture of the moon orbiting the earth
while having synchronized its angular momentum and its own rotation to the rotation of
the earth about its axis (Carroll and Ostlie, 2007). More precisely the term “coupling”
refers to the fact that the angular momentum and spin quantum number of a single
electron are not “good quantum numbers” (their assigned operators do not commute
with the Hamilton operator of the whole system) while the joint and allowed (obeying
the Pauli principle) vectorial sums to L, S, J (LS-coupling) or to ji (∀i = 1, . . . , N ,
where N is the number of electrons) and J are good quantum numbers (Landau and
Lifshitz, 1987).

15Or as in the case of one particle in any other central potential. The arising of this hydrogen-like
behavior is related to the spherical O(3) symmetry (central potential) and not to the special case of
a Coulomb potential (Fließbach, 1991).
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The two limiting cases for coupling arise from the different length scales of distances
between preferred regions of the electrons around the nucleus in differently sized atoms.
This goes along with the relative size of the two perturbative terms. The spin-orbit
coupling is weak in relation to global coupling if the distances are small, yielding LS-
coupling and coming along with Ĥrest ≫ Ĥs−o. In the case of a heavy system the
distances are large; so the effect of the spin-orbit coupling is no more negligible in
relation to electrostatic effects (Ĥs−o ≫ Ĥrest) and the single electron wave function
“sees” its own spin and angular momentum before it is “thinking to care” about the
angular momentum states of the other electrons and therefore jj-coupling is the scheme
of choice (Cowan, 1981; Bransden and Joachain, 2003; Friedrich, 1990; Condon and
Shortley, 1970) (see figure 2.2).
If both spin-orbit effects and the residual electrostatic effects are important and no term
can be left out of the examination intermediate coupling takes places. To handle this
case is an extensive undertaking and in this thesis just the two extreme cases of LS- and
jj-coupling will be examined (Bransden and Joachain, 2003).

Ĥmean ≫ Ĥs−o

Ĥmean ≈ Ĥs−o

Ĥs−o ≫ Ĥmean

Ĥ = Ĥmean

(no coupling)

Ĥ = Ĥmean + Ĥrest

(LS-coupling)

Ĥ = Ĥmean + Ĥrest + Ĥs−o

(intermediate coupling)

Ĥ = Ĥmean + Ĥs−o

(jj-coupling)

Figure 2.1.: For the three cases of the relative strength of the two terms Ĥrest and Ĥs−o

different coupling schemes are valid.

2.2.1. LS-coupling

As mentioned above the LS- (or Russel-Saunders-) coupling is an appropriate way of
describing small electronic configurations (atoms with Z ≤ 10 (Haigh, 1995)). The
reason for this is that the spin-orbit coupling is weak in comparison to the electrostatic
effects. This means that in the central field approximation the ith electron’s term in the
Hamiltonian Ĥ proportional to ~li · ~si (the so called spin-orbit effects – or in this common
order better: orbit-spin effects) is small enough to be negligible Bransden and Joachain
(2003). In terms of perturbation theory this leads to first solving the static Schrödinger
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equation
Eni,meanψi,mean = Ĥmeanψi,mean, (2.62)

yielding unperturbed single particle wave functions ψnilimli
msi

. Their angular momenta

couple to a common ~L and ~S and “then” a finer structure emerges from the coupling
of ~L and ~S to a whole system total angular momentum ~J . It is important that the
“coupling” here can be expressed in the vectorial sums (Fließbach, 1991):

~L =
N
∑

i=1

~li, (2.63)

~S =

N
∑

i=1

~si, (2.64)

~J = ~L+ ~S. (2.65)

The impact of the vectorial sum together with the fact that only ~L2, ~S2, ~J2 and Lz,
Sz, Jz are commutating with Ĥ (and hence just L2, S2, J2, mL, mS and mJ are good
quantum numbers) is hardly to be overrated.
These facts are the reason for the combinatorics that necessitate the program described
in this thesis. Mind that the conservation of the length and the projection to one axis
of the vectors are leading to circles of points (intersection points of sphere and a plane).
Thus the set of possible vectors having the same length and z-axis projection lie on a
cone as mentioned above (Reinhold, 2006). There are cones with heights in z-direction
from mL = −L,−L+1, . . . up to mL = . . . ,+L− 1,+L possible for a single value of L2

(Landau and Lifshitz, 1987). This is also true for S2 and J2; but more importantly (for
LS-coupling) for all the l2i and s2i (See Figure 2.2, 2.3 and 2.4).
The smearing in x- and y-direction is referred to as Heisenberg’s uncertainty principle
2.28. First all ~li and all ~si add up vectorially being adjusted to a possible value of mli

and msi to
~L and ~S. This leads to a lot of permutations for the single electron quantum

numbers (|n1, l1, ml1, ms1〉 ⊗ · · · ⊗ |nN , lN , mlN , msN 〉) and because of those to a set of
collective quantum numbers (|L, S, J,mJ〉). Due to the Pauli exclusion principle only
some of those states are possible, because some L or S cannot be reached without having
electrons in the same states which is forbidden.
LS-coupling is based on the assumption that the contribution of a single term such as

~̂li · ~̂si is small, but after adding up to ~L and ~S those whole system spin and orbit related
values “talk” to each other and now contribute to Ĥ. To obtain the energy contribution
the bra and ket vector of an LS-coupling state have to act on the term in the Hamilton

operator of the system that is proportional to ~̂L · ~̂S (Fließbach, 1991). This approach is
necessary in order to get the first order energy correction from the term Ĥs−o to obtain
a finer structure depending on J using perturbation theory. That a term proportional

to ~̂L · ~̂S can be diagonalized yielding the same subspace as Ĥs−o can be shown by the
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~li

-

-

-

-

,mli

+2

+1

−1

−2

x

y

z

∑

i

~L

Single electron’s ~li add up vectorially to ~L.

Figure 2.2.: Illustration of a single electrons angular momentum vector ~li for the case of
li = 2. This enables the vector to have a mli from −2 up to +2 in steps of
the size 1. For each of those adjustments a representation is drawn in the
graphic. All those vectors are on cones due to the uncertainty principle and
their length is equal to

√

li(li + 1). All physically possible (Pauli exclusion
principle) orientated groups of single electron angular momenta for the whole

atom “then” vectorially add up to the total system angular momentum ~L
(see equation 2.63).

x

y

z

-

~si

,msi

+ 1

2

− 1

2

-
∑

i

~S

Single electron’s ~si add up vectorially to ~Si.

Figure 2.3.: There are two possible adjustments for the spin vector of each electron: Up
↑ and down ↓ coming along with the two possible values ±1

2
formsi. In those

cases of all combinations of all single electron spins they add up vectorially
to a whole atom total spin vector ~S, in which the whole system obeys the
Pauli principle (see equation 2.64).
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Wigner-Eckart theorem (Cornwell, 1997). So we have

〈ELS〉 = 〈L, S, J,mJ | ĤLS |L, S, J,mJ〉 ∝ 〈ΨLSJmJ
| ~̂L.~̂S |ΨLSJmJ

〉

=
1

2
(〈ΨLSJmJ

| ~̂J2 − ~̂L2 − ~̂S2 |ΨLSJmJ
〉)

=
1

2
(〈ΨLSJmJ

| (J(J + 1)− L(L+ 1)− S(S + 1)) |ΨLSJmJ
〉)

=
1

2
(J(J + 1)− L(L+ 1)− S(S + 1)),

assuming |ΨLSJmJ
〉 = |L, S, J,mJ〉 to be an orthonormal eigenbase of the system Hamil-

tonian Ĥ and hence of Ĥs−o (Landau and Lifshitz, 1987).
For a given set of L and S there are several values possible for J if the anti-symmetry
of the many-body system is guaranteed: J ranges from |L − S| in steps of size 1 up to
L+ S. This is known as the triangular condition (Reinhold, 2006)

J = |L− S|, |L− S|+ 1, . . . , L+ S − 1, L+ S. (2.66)

An example for the practical understanding of this important relation is given in the
next section because it is a result of the mechanism how angular momenta add and this
mechanism governs everything while determining the level structure of neutral atoms
and as well as ions. But a formal proof is possible by counting the degeneracy of linear
subspaces of Ĥ belonging to values of mJ and then deducing the possible values of J
(Wormer, 2012). Informally this is the same as one sometimes refers to as producing all
mJ and afterwards crossing out all values from the current maximal (mJ)max in steps of
size one to −(mJ )max until nothing is left in a general version.
The resulting physically possible states (characterized by S, L, J , mJ) are expressed by
a common nomenclature that is called the term symbols :

2S+1L
(◦)
J . (2.67)

The “◦” in the top right corner is only used of a state that has odd parity, P , where

P = (−1)
∑N

i=1 li. (2.68)

A term symbol expresses a level (L, S, J), the whole set of quantum numbers including
mJ is called a state and the term symbol without giving J is called a term (Haigh,
1995). Conventionally in this notation L is not described by numbers expressing the an-
gular momentum operator eigenvalues. Instead letters are used (see table 2.1). This is
called “spectroscopic notation” due to the relation between line characteristics (“sharp”,
“principal”, “diffuse” and “fundamental” or “fine”) and the theoretically revealed eigen-
values of the angular momentum operator that were discovered later (Bransden and
Joachain, 2003). The splitting into 2S + 1 different mS values leads to the denotation
of this “multiplicity” in the top left corner. The value of mJ is not expressed in this
notation. Nevertheless a state in LS-coupling is characterized by this value and there
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~S
~L

+

~L

~S

~J

x

y

z

Total ~S and total ~L add to yield ~J .

Figure 2.4.: The total Spin ~S and the whole system angular momentum add up vecto-
rially to ~J , the whole system total angular momentum. Again there are
2S + 1 possible mS values and 2L + 1 values for mL. Being adjusted to a
combination of them the ~L and ~S add to yield a set of possible mJ values
and therefore to a set of ~J (equation 2.65) ranging from |L−S| to L+ S in
steps of size one (see triangular condition 2.66).

Table 2.1.: The common assignment of letters instead of numbers to values of angular
momenta L in term symbols and li in orbital configurations.

Value of angular momentum (L, l) in [~]: 0 1 2 3 4 5 6 7 . . .
Letter assigned to L in term symbols: S P D F G H I K . . .
Letter assigned to li in orbital configurations: s p d f g h i k . . .

23



J = 2

J = 1

J = 0

3P

3P2

3P1

3P0

Figure 2.5.: Splitting of a term into a multiplet. Each of those levels in the multiplet is
expressed by a term symbol.

is a degeneracy of 2J + 1 states per value of J . They split into these values in the case
of a measurement that emphasizes a special direction so that the projection of J that is
mJ becomes important. Applying a magnetic field in some special direction during the
transition can experimentally reveal this splitting property. The notation also does not
stress the fact that there are 2L+ 1 possible values for mL which leads to a degeneracy
of (2L+ 1)(2S + 1) per set pair of values of L and S. But the multiplicity is still a wise
choice because it counts how many values of J are at most possible (without taking the
Pauli exclusion principle into account) to build a multiplet (see triangular condition 2.66
and figure 2.2.1).
For the orbital configuration the common notation is used:

n1l
x1
1 n2l

x2 . . . nml
xm

m , (2.69)

where ni denotes the principal quantum numbers, li the angular momentum quantum
numbers and xm the number of electrons in the subshell defined by both ni and li. The
total number of electrons is implicitly given by:

m
∑

i=1

xi = N (2.70)

The li are expressed by the same letters as L, but written in lower case (see table 2.1).
Sometimes in the physics literature the orbital (or electronic) configuration is given in
a more explicit form that uses parentheses but means the same. For example, one uses
(3d)2 instead of 3d2.
The notation introduced above (equation 2.67) is simple and a good choice for a quick
general insight, but it is not unique since the same level can result from different linear
combinations of subsets of quantum numbers in the same electron configuration. A
more precise version can be produced due to the distinguishability of terms having the
same L, S, J by taking the “parental history” (Condon and Shortley, 1970; Condon
and Odabasi, 1980) of the final term (and therefore level) into account. This history is
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the way the successive coupling of shells takes place. One can think of the xk electrons
in a shell with nk and lk. They couple (LS-coupling) to a term 2Sk+1Lk and this term
couples with the joint term of all shell with an index a < k. “Then” the xk+1 electrons
in the next outer shell (nk+1 and lk+1) couple to a term 2Sk+1+1Lk+1. This term again
couples with the joint term of all shells with an index a < k + 1. This leads to the used
notation16:

(

. . .
((

n1l
x1
1

(

2S1+1L1

)

n2l
x2
2

(

S2+1L2

))

2S1&2+1L1&2

)

. . . nml
xm

m

(

Sm+1Lm

))

2S+1L
(◦)
J

(2.71)
One has to bear in mind that the simple version of jj-coupling introduced in equation
2.67 appears in the more sophisticated version in the end (red) and the “parental history”
(blue) of the term symbol appears in the outermost parentheses (black):

(

. . .
((

n1l
x1
1

(

2S1+1L1

)

n2l
x2
2

(

S2+1L2

))

2S1&2+1L1&2

)

. . . nml
xm

m

(

Sm+1Lm

))

2S+1L
(◦)
J

(2.72)

The partial orbital configuration nil
xi

i is to be interpreted as all partial orbital configu-
rations with the same n = ni:

nil
xi

i ≡ nil
xi1
i1 nil

xi2
i2 . . . nil

xir

ir , (2.73)

if there are r possibly different values for l for the value ni. This is simply a short
notation that expresses a whole shell with the symbol of one subshell. For example n2l

x2
2

expresses the same as 2s22p1 in the configuration 1s22s22p13s1. This configuration has
the structure n1l

x1
1 n2l

x2
2 n3l

x3
3 that is semantically equivalent to n1l

x11
11 n2l

x21
21 n2l

x22
22 n3l

x31
31 .

So the expanded notation introduced in equation 2.71 is given with a non expanded
orbital configuration notation.

2.2.2. jj-coupling

In the case of atoms with a large number of electrons the terms proportional to ~li · ~si
are more important than the electrostatic behavior in the mean field. So the latter are
considered as a small perturbation (Bransden and Joachain, 2003). This fact leads to

the behavior of the atoms that their electrons first couple their ~li and ~si to single electron
total angular momenta ~ji and those add up (vectorially) to a whole system total angular

momentum ~J :
~ji = ~li + ~si (2.74)

16One has to keep in mind that this is just one way to get a unique set of term symbols. In fact a lot
of histories are possible and it is possible to show that all those lead to the same physically possible
levels with the same J . This is done for example in (Condon and Odabasi, 1980). This way is chosen
because it couples first those electrons together that are “nearer” and then those that are “more far”
away from each other because of them being farther away from the nucleus and more importantly
because Palmeri chose this coupling order (AUTOSTRUCTURE) and the program written as part
of this thesis is intended to compare this results with results of others like FAC and HULLAC.
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~li

-
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-

,mli

+2

+1

−1

−2

x

y

z

x

y

z

-

+

~si

,msi

+ 1

2

− 1

2

-

~ji

Single electron’s ~li and ~si add up to to ~ji.

Figure 2.6.: Illustration of the angular momentum vector ~li of a single electron adding
up with the single electron’s spin ~si yielding the single electron’s total an-
gular momentum ~ji (equation 2.74). That this happens “before” those ~ji
are adding up to the whole atom’s total angular momentum distinguishes
the jj-coupling from the LS-coupling. Again all those vectors are on cones
due to the uncertainty principle and their lengths are equal to

√

li(li + 1),
√

si(si + 1) and
√

ji(ji + 1). All physically possible (Pauli exclusion prin-
ciple) orientated single electron variable vectors “then” vectorially add up

to the whole system total angular momentum ~J (see figure 2.2.2).

~J =
N
∑

i=1

~ji (2.75)

The same combinatoric machinery as in the LS-coupling takes place in the jj-case; but
the other way around. The single electron vector quantities have some possible mli and
msi . “Then” they could add up to lots of possible ~ji. Finally those – holding values of
mji – add up to J . But again only those combinations of the single electron quantities
that obey the Pauli principle are physically possible. In the case of LS-coupling the
equivalent electrons are those with a common n and l, but in the case of jj-coupling
the electrons that have a common ni, li, ji. Also the set of quantum numbers that are
important for the coupling are n, l, j, mj

17.

17But for the filling of the electron orbitals the “normal” quantum numbers n, l, ml, ms are important.
Additionally in both cases s is an important quantum number, but it is suppressed in every notation
and never stressed to be important, because it is the same (s = 1

2
) for all electrons as mentioned in

the theory section.
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~ji

-
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-

,mji

+2

+1

−1

−2

x

y

z

∑

i

~J

Single electron’s ~ji add up vectorially to ~J .

Figure 2.7.: Illustration of the single electrons angular momentum vector ~ji for the case
of ji = 2. This enables the vector to have a mji from −2 up to +2 in steps of
the size 1. All those vectors are on cones due to the uncertainty principle and
their length is equal to

√

ji(ji + 1). All physically possible (Pauli exclusion
principle) orientated groups of single electron angular momenta for the whole

atom “then” add vectorially up to the total system angular momentum ~J
(equation 2.75).

27



For this coupling scheme there are several conventions to denote the possible states.
The following general form was chosen to enable the simple identification of possible
transitions between the term symbols (Herzberg, 1937):

(j1, j2, . . . , jN)
(◦)
J (2.76)

The “◦” in the top right index denotes the odd parity if present just as used in LS-
coupling nomenclature. To provide a more precise indication of possible states by these
terms it is possible to couple electrons in the same shell of equivalent electrons (same ni,
li, ji) first and then couple those shell total angular momenta successively, similarly to
the parental history in LS-coupling. This could be denoted by grouping all j belonging
to one shell in parentheses and adding a common jgroup in the lower right index:

[nili±]xi

ji
, (2.77)

where + denotes spin up (ms =
1
2
) and − denotes spin down (ms = −1

2
). For example,

d+ is an equivalent expression for j = 5
2
. This shell can then couple its whole shell’s

total angular momentum to the “next” outer shell. An important point about this
nomenclature is that there could be parts of the orbital configuration with the same
ni and li, because they have a different ms leading to a different ji. This leads to the
following form of term symbols in jj-coupling:

(

. . .
(

[n1l1±]x1

j1
[n2l2±]x2

j2

)

j1&2

. . . [nklk±]xk

jk

)(◦)

J

(2.78)

Hence the indices in 2.78 are not the same as in 2.69, because now they count the
portions of equivalent electrons in jj-coupling. One has to bear in mind that the simple
version introduced in equation 2.76 now appears distributed over whole term symbol
(red) and the “parental history” (blue) is distributed over the whole term symbol as
well:

(

. . .
(

[n1l1±]
x1

j1
[n2l2±]

x2

j2

)

j1&2

. . . [nklk±]
xk

jk

)

(◦)

J

(2.79)

In this equation the “last” jgroup (to be exact j1&...&m) is the result of successively coupling
all subshells and therefore all electrons. This is the same as the whole atom’s total
angular momentum J and finally just “J” is denoted in the lower right index of the
jj-term symbol. This notation is modeled on the history stressing notation introduced
for LS-coupling and the output of the already mentioned atomic code FAC.

2.2.3. A problem of a simple assignment of LS- to jj-coupling term

symbols: base transform

States in the one coupling scheme are not directly related to states in the other (Landau
and Lifshitz, 1987; Condon and Shortley, 1970; Condon and Odabasi, 1980). Since term
symbols in one scheme are linear combinations of the states in the other. To illustrate
this the case of two entities having angular momenta and the base transform from the
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product state Hilbert space to the common angular momentum Hilbert space is examined
(Eisberg, 1985):

Hj1 ⊗Hj2 → HJ . (2.80)

The angular momenta j1 and j2 and their total angular momentum J can be exchanged
with all the “angular-momentum-like” values such as:

• li and si and their common angular momentum value ji,

• j1&...&k and jl and their added j1&...&k&l or

• L and S with their total angular momentum J .

In other words, there are “angular-momentum like” quantities at all levels that can
couple. But there is a problem with the assignment of states in one scheme to those in the
other: Both pictures are equivalent but states in the one description are sums of states in
the other description weighted by the Clebsch-Gordan coefficients. These coefficients are
the unitary base transform from the product-state base (|j1, mj1, j2, mj2〉 = |j1, mj1〉 ⊗
|j2, mj2〉) to the eigenbase of the coupled states (|j1, j2, J,mJ〉):

|j1, j2, J,mJ〉 =

j1,j2
∑

mj1
,mj2

=−j1,−j2

|j1, mj1, j2, mj2〉 〈j1, mj1, j2, mj2| j1, j2, J,mJ〉 , (2.81)

where the orthonormality of the product-state base was used by multiplying with the
identity from the left. The complex numbers 〈j1, mj1 , j2, mj2| j1, j2, J,mJ〉 are the Clebsch-
Gordan coefficients (Fließbach, 1991). Such a base transform is necessary in every cou-
pling step to have the total angular momentum operator diagonalized simultaneously
with the operator of its z-component (Condon and Shortley, 1970; Condon and Odabasi,
1980). The common states of single electrons li and si are therefore linear combinations
of the single angular momentum states. The coupling states of these states are also lin-
ear combinations of the ji and so the resulting jj-coupling terms are linear combinations
of the whole set of single angular momentum states li and si (∀i = 1, . . . , N). Similarly
in the case of LS-coupling the successive coupling of the li to the L and of the si to the
S leads – finally with the coupling of L and S – to the fact that also the LS-coupling
terms are linear combinations of the single angular momentum states belonging to all
the li and si. Finally all the terms (and hence the term symbols) are linear combinations
of the fundamental angular momentum states |li, mli〉 and |si, msi〉 but – and this is the
important fact – in different ways. Without exceptions no state in the one coupling
corresponds to the other. They are all formed out of many other states in the other
coupling scheme weighted with base transform coefficients (like the Clebsch-Gordan co-
efficients). This means that the way how the basal angular momenta si and li combine
linearly is different for the two coupling cases but in both cases the final states build a
base in which the Ĵjj and ĴLS are diagonal and yield the same eigenvalues J (Condon
and Shortley, 1970; Condon and Odabasi, 1980).
The idea of bypassing this issue when trying to obtain corresponding levels is to produce
all term symbols, sort them energetically (as good as possible) and then assign the xth
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term symbol in the LS-coupling list to a term symbol close to xth entry of the jj-coupling
list.
Herzberg (1937) states that an “unambiguous correlation is possible”, because in both
schemes are equally many term symbols with the same values of J . But two sentences
later he weakens this statement and says that it “has only a very limited value”.

2.2.4. Hund’s rules

Another problem of this assignment method is thatHund’s rules (Hund, 1925; Herzberg,
1937; Engel, 2006):

1. The term, and thus the term symbol, with maximal S has the lowest energy,

2. If there is more than one term, the term with maximal L has the lowest energy,

3. If the open subshell is less than half filled the term symbol that has the lowest
J has the lowest energy. If the open subshell is more than half filled, the term
symbol that has the highest J has the lowest energy.

are only valid if the Coulomb interaction of the outer electrons is stronger than the spin-
orbit interaction. This is exactly the validity regime for LS-coupling (Ĥrest ≫ Ĥs−o)
and not for jj-coupling (Ĥs−o ≫ Ĥrest). A mapping by sorting is not very effective if
just one list is sorted by means of energy and the other is not.
If there is more than one open subshell, Hund’s rules do not tell how to treat this case.
I chose the outermost open subshell for the application of the third rule.
There is even a bigger problem. Hund’s rules are itself not very good to sort even LS-
coupling terms, because they are intended to just find the level of lowest energy, the
ground state. They are phrased in a way that only allows to abuse them by picking
out two terms and finding the “ground state” of those two terms and to get this way a
comparing tool for the energy of terms. But this is not what Hund’s rules are able to.
They just inform the user of them about what term is the ground state out of all terms
belonging to one electron configuration.
Nevertheless this mapping approach was chosen, because misusing Hund’s rules is the
best of all bad alternatives. Most likely the mapping is nonsense in a strict sense. But
using Hund’s rules was the only possibility and it may at least be not too wrong in some
cases. Slightly exaggerated one could say, doing any sorting is better than a random
order.
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3. Internal principles of operation of

the program

Based on the discussion of the previous chapter I have written a program as the main
part of this thesis. The program is written in the language Python. It takes the orbital
configuration as the input and produces as the output a list containing lists with the
quantum numbers for the states in both jj- and L-S-coupling. It sorts them by Hund’s
rules and writes this output to a latex table contained in a .tex file. Optionally a FAC
notation output can also be written to a file. This option is turned on by default.
Python allows fast handling of out- and input, because of an easier handling of data
types (nearsighted thought) and because of the nice iteration module (itertools) that
is available for Python and makes tasks like combinations, permutations, or cartesian
products a simple step. These operations are important as examined below.

3.1. LS-coupling terms producing algorithm

The algorithm used to produce LS term symbols is the one proposed by Doggett and
Sutcliffe (1998). The algorithm is able to produce all LS-coupling term symbols for a
given electron configuration of arbitrary complexity, but in the program the electron
configuration is partitioned into all shells that contain electrons and then this algorithm
is just used for producing all terms that arise from this shell. Afterwards those shells
are coupled successively just using the triangular condition, Eq. 2.66.

In general the input information is the quantum numbers of all electrons n1l
x1
1 n2l

x2 . . . nml
xm
m

and the algorithm is:

1. • The total number of electrons N is calculated by N =
∑m

i=1 xi.

• The total number of l-degenerated orbitals n is calculated by summing up all
l-multiplicities n =

∑m
i=1(2li + 1).

2. All those orbitals get assigned with an unique integer. Explicitly this means that all
those mli are sorted arbitrarily and then are mapped onto the set {1, 2, 3, . . . , n}.

3. All Weyl diagrams are produced that belong to N . A Weyl diagram is a two
dimensional array consisting of two columns. The sum of the two lengths of the
columns has to be N : λ1 + λ2 = N , where λi is the length of column number i.
Additionally, to ensure that there are no duplicates the second column must not
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be longer than the first: λ1 ≥ λ2. The fields in the first column represent electrons
with spin up and the field in the second column electrons with spin down. The
values S = λ1−λ2

2
are calculated and saved for each diagram.

4. A Weyl diagram is picked out and filled with the values numbering the orbitals in
every way it is possible to fulfill the following conditions (for the implementation
of these steps the itertools module is helpful):

• The numbers are not allowed to decrease in a row from small indices to high
indices of the fields in that row.

• The numbers in a column must increase.

• No more values assigned to mli that belong to li are allowed to be filled into
one Weyl tableaux than electrons are in the li shell. This basically means
that a magnetic quantum number mli is assigned to every electron in this
shell, obeying the Pauli exclusion principle.

Those filled Weyl diagrams that are possible are called Weyl tableaux.

5. For each type of Weyl tableaux (unique set of λ1 and λ2) the following steps are
to be executed:

• Sum allmli in one tableaux to getmL for all the tableaux: mL =
∑

i in one
tableux

mli .

• Count how often the maximum mli occurs and strike out that many occur-
rences of all tableaux having a mL from −mL,max to +mL,max in steps of size
one. All of these belong to a term that has L = mL,max as its angular mo-
mentum quantum number and S = λ1−λ2

2
as its spin. Therefore to the final

list of resulting terms the term 2S+1L as many times as the maximum mL,max

was counted.

• Again in the remaining list the maximum element is identified, counted and
striked off that often with all the associated tableaux with mL = −mL,max +
1, . . . ,+mL,max and that many terms with that mL,max = L are added to the
list of resulting terms as often the maximum mL,max appeared.

• This process is iterated until the list of Weyl tableaux is empty.

6. The last two steps (4. and 5.) are executed for all Weyl diagrams and the resulting
terms are added to the previous list of terms.

7. After all Weyl diagrams are processed the resulting list should contain all LS-
coupling terms without their parental history, but with the number of occurrences.

This is just the algorithm that is used for one shell. The parental history turns up by
applying this algorithm to every shell and afterwards coupling those shells successively
using the triangular condition, Eq. 2.66.

As an example the configuration 2d2 (n1 = 1, l1 = 2, x1 = 2) is carried out in the
following:
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1. • The number of electrons is N =
∑1

i=1 xi = x1 = 2.

• Number of all possible magnetic quantum numbers mli n =
∑1

i=1(2li + 1) =
2l1 + 1 = 2 · 2 + 1 = 5.

2. All those orbitals get assigned with an unique integer:

ml1 −2 −1 0 +1 +2
labeled by 1 2 3 4 5

3. All possible Weyl diagrams are:

1 = λ1 ≤ λ2 = 1 λ1 + λ2 = 1 + 1 = 2 = N S = λ1−λ2

2
= 1−1

2
= 0

2 = λ1 ≤ λ2 = 0 λ1 + λ2 = 2 + 0 = 2 = N S = λ1−λ2

2
= 2−0

2
= 1

4. Picking out the Weyl diagram and filling with the labels of the mli yields:

5 5 , 5 4 , 5 3 , 5 2 , 5 1 , 4 4 , 4 3 , 4 2 , 4 1 ,

3 3 , 3 2 , 3 1 , 2 2 , 2 1 , 1 1 .

5. Producing LS-terms by the following steps:

• The Weyl tableaux are translated back to the real mli values:

2 2 , 2 1 , 2 0 , 2 −1 , 2 −2 , 1 1 , 1 0 , 1 −1 ,

1 −2 , 0 0 , 0 −1 , 0 −2 , −1 −1 , −1 −2 , −2 −2 .

This leads to the following list ofmL ∈ {4,3,2,2,1,1,0,0,0,−1,−1,−2,−2,−3,−4}.

• The maximum element mL,max = 4 and it occurs once. Thus the elements
4,3,2,1,0,−1,−2,−3,−4 are striked off the list and the remaining
mL ∈ {2,1,0,0,−1,−2}. The spin for this type of Weyl tableaux is S = 0
that has the multiplicity 2S + 1 = 1. The angular momentum of the term is
L = mL,max = 4 ≡ G. Hence the term 1G is added to the list of terms.

• The new maximum element mL,max = 2 and it occurs once. Thus the elements
2,1,0,−1,−2 are striked off the list and the remaining list is {0}. The spin for
this type of Weyl tableaux is again S = 0 and the angular momentum of the
term is L = mL,max = 2 ≡ D. Hence the term 1D is added to the list of terms
{1G,1D}.

• The new maximum element mL,max = 0 and it occurs once. Thus the element
0 is striked off the list and the remaining list is empty forcing the program to
go to the next unprocessed Weyl tableaux. The spin S = 0 and so the new
term is L = mL,max = 0 ≡ S. Hence the term 1S is added to the list of terms
{1G,1D,1S}.
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6. The next and last Weyl diagram to be picked out is . This yields the following

Weyl tableaux:

4
5

,
3
5

,
2
5

,
1
5

,
3
4

,
2
4

,
1
4

,
2
3

,
1
3

,
1
2

7. • This list results in the following real mli values:

1
2

,
0
2

,
−1
2

,
−2
2

,
0
1

,
−1
1

,
−2
1

,
−1
0

,
−2
0

,
−1
−2

• Adding those values in each diagram yieldsmJ ∈ {3, 2, 1, 1, 0, 0,−1,−1,−2,−3}.
The maximum element mJ,max = 3 and thus 3, 2, 1, 0,−1,−2,−3 are striked
off leaving mli ∈ {1, 0,−1}. The spin of this type of Weyl diagram is S = 1,
hence the multiplicity 2S+1 = 3. The angular momentum L = mJ,max = 3 ≡
F. The term 3F is added to the list of terms {1G,1D,S ,3 F}.

• The new maximum mJ,max = 1, yielding an empty list after striking out
1, 0,−1 forcing the complete algorithm to stop, because no type of diagram
and for this type no tableaux is left. The final term added has again S = 1
and L = mJ,max = 1 ≡ P: 3P .

The algorithm produced the terms 1G,1D,1S,3F ,3P .

3.2. jj-coupling term symbols producing algorithm

The jj-coupling term symbols are produced by a straightforward approach. After all
possible partitions into nili− and nili+ had been calculated, the following algorithm is
used to couple those jj-coupling-equivalent electrons to get jj-coupling terms for each
nili±. Those terms then are coupled together successively as in the case of LS-coupling
using the triangular condition 2.66. So the input is [nili]

xi− , [nili+]xi+ for all subshells i.

The algorithm is as follows:

1. For each electron every value of mji is generated: mji = −ji,−ji + 1, . . . ,+ji and
all the quantum numbers ni, li, ji, mji are saved. The cartesian product of all those
single electron values is produced.

2. All those products are scanned for duplicates of quantum numbers. Those products
are deleted, because they disobey the Pauli exclusion principle. Additionally, all
items in the list are checked for items that are equal under permutation of the
electrons and just one of those is kept due to the interchangeability of electrons.

3. Then all the mji are added to yield a value mJ . Now there is a list of all physically
possible products and their assigned mJ and all the information about the single
electrons including there ji ≡ li±.
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4. In this list the maximum mJ,max is identified and counted1. As in the case of
LS-coupling that many occurrences of products with mJ = −mJ,max,−mJ,max +
1, . . . ,+mJ,max are deleted as often mJ,max was counted. A term with J = mJ,max

is added to the list of resulting terms as often as mJ,max was counted.

5. In the remaining list the new maximum mJ,max is identified and counted and step
4. is executed. This procedure is repeated until the list of products is empty. The
resulting terms of step 4 are appended to the list of resulting terms and this list is
in the end the list of jj-coupling terms.

As in the case of LS-coupling an example shall clarify the algorithm. The examined
configuration is [2s+]2.

1. The mli for each electron are:

electron 1 mli = +1
2
,−1

2

electron 2 mli = +1
2
,−1

2

The cartesian product is: (+1
2
,+1

2
), (+1

2
,−1

2
), (−1

2
, +1

2
), (−1

2
, −1

2
).

2. Just (+1
2
,−1

2
), (−1

2
, +1

2
) stay in the list after deleting those that harm the Pauli

exclusion principle and because they are equal if one interchanges entry one and
two of one of these two tuples, just (+1

2
,−1

2
) is in the list.

3. Summing both entries of (+1
2
,−1

2
) yields 0, hence the list of all mJ = 0.

4. The maximum mJ,max = 0. After removing 0 from the list, the list is empty and
the algorithm stops, yielding one term symbol with J = mJ,max = 0

So the algorithm returns the term symbol, namely [2s+]20.

3.3. Overall structure of the program

The first step the program executes is to read in the orbital configuration in the FAC
input notation (see next section for a description). This notation can be ambiguous.
Thus the program evaluates all possibilities for the shell and then produces a list of
all the cartesian products of the shell configurations. Now there is a list containing all
possible electron configurations that are meant by the FAC input. The following steps
are executed for all those configurations:

1. The electron configuration is split into all shells separately and stored in a list A.

1Which should be one, because the algorithm is used in a way, that every jj-symbol is unique and
therefore no term symbol should occur more often than exactly one time.
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2. For all the items in A the algorithm, described in section 3.1, is applied and the
results are appended to a list B.

3. The cartesian product of all those coupling results of the single shells is built. All
those products are appended to a list C.

4. Every list in C is sorted by means of the shell from small n to larger n, where n is
the principal quantum number.

5. Every item of list C is possible way the single shells could have coupled and for
all those possibilities successively those shells get coupled by:

a) Producing the values Li&j and Si&j by using the triangular condition 2.66 for
Li along with Lj for Li&j and Si together with Sj to get Si&j. First i and j
are 1 and 2. The results are saved.

b) i is set to 1&2 and j to 3. Step one is executed again.

c) In general i is set to 1&2& . . .&k − 1 and j to k. This is done until k equals
to the cardinal number of list B (See the example in the previous section).
So the coupling can be exemplified this way using a formal expression

(. . . (((1&2)&3)&4) . . .&kmax), (3.1)

if there are kmax shells and & denotes the coupling.

d) This is leading to a final term for which the whole history is saved.

e) In the last step the final L and S are coupled to yield the total J .

6. All those term symbols belonging to one configuration are appended to a list D.

7. Finally they get sorted by the third of Hund’s rules, because the first two are
given implicitly in the previous algorithm. In some steps it is necessary to elim-
inate duplicates and therefore the lists got sorted by means of “something” (this
is necessary for an implemented function that eliminates duplicates). And this
“something” was chosen to be one time L and the other time S.

8. Now the jj-coupling terms are produced by splitting A in a different way than for
LS-coupling term symbols. Now it is split into sub shells (same n and l), yielding
a list E.

9. For all items in E all possible single electrons ji are calculated and stored grouped
in jj-coupling subshells ([nili±]xi±). The cartesian product of all those physically
possible partitionings of nili into [nili]

xi− [nili+]xi+ is saved in list F , where xi± is
thenumber of electrons in [nili±].

10. The same successive coupling as in the case of LS-coupling takes place for every
possible product of shell partitions. This is again done by using the triangular
condition 2.66.
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11. Finally all those terms get assigned with J using the triangular condition 2.66.

12. Those term symbols get sorted by means of the sum of the involved ji and not by
J yielding a final jj-coupling term symbols containing list G for this particular
configuration.

Afterwards all term symbols are handled to a function that takes a term symbol and
produces the FAC output and a LATEXversion. All those are the output for one configu-
ration. But there are many configurations if the FAC input allowed more than one. The
first list A containing all those electron configurations is sorted by the following rule:
A configuration is higher in energy if more electrons are in sub shell that are situated
further away from the nucleus2.
Finally all the term symbols in both coupling schemes, sorted by Hund’ rules as good as
possible inside an electron configuration and sorted by the number of electrons in more
outer subshells, are written to the two files hclsvsjj.tex and hclsvsjj.txt. The first one
is ready to get composed by LATEXand the second one contains the machine readable
output that is also produced by FAC so that the user could compare FAC to other codes
more easily. 3.1 visualizes the overall structure of the program in a simplified manner.
“hclsvsjj” is a acronym for highly charged LS versus jj, because the program is inter
alia intended to examine highly charged ions. The program itself is a python script
and is therefore named hclsvsjj.py. The lines above and below the latex table in the
hclsvsjj.tex file is contained in the two files header.txt and foot.txt.

2This is not really true. “Situated further away from the nucleus” means here that n is larger and for
the same n l has to be larger. Whether a bigger n or l is correlated with being further outside the
atom or not is a difficult question to answer. In general it is wrong or just a statement without much
meaning, because there are many maxima of |ψnili |

2 in general. The mean location of most likely
measuring the electron maybe sortable, but again this is not very meaningful, because the electron
could have a minimum of its ρ there. In spite of this being the mean value, it is very unlikely to
find the electron there.
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Figure 3.1.: Simplified flowchart of the overall structure of the script.

38



4. On the usage of the program

In the following section the input and output of the program is described. It is to be seen
as a short manual enabling the user of the Python script to obtain LS- and jj-coupling
term symbols listed together in a .pdf file and additionally obtaining the FAC output of
the jj-coupling term symbols in the output formatting as FAC uses in its energy level
tables.

4.1. Input and output formatting

The information that has to be handed over to the function, is just the electron con-
figuration n1l

x1
1 n2l

x2 . . . nml
xm
m and the output is a list of all term symbols. But the

formatting of both is important.

4.1.1. FAC input

If the program is executed the user is asked to write the orbital configuration in the style
of the input of an electron configuration in the atomic code FAC.
This input style has the following rules:

• Sub shells are separated by a space.

• Full sub shells can and empty sub shells must be omitted.

• The value of ni is typed in first as an integer: 1, 2, 3, 4, . . ..

• The value of li is typed in lower case following the spectroscopic notation: s, p, d, f, . . ..

• The number xi of electrons in that sub shell as an integer: 1, 2, 3, 4, . . . , 2li + 1.

• There are two options to group more than one sub shell together by distributing
the number of electrons given to all of them over them in all possible ways:

1. The electrons are distributed to all the sub shells with angular momenta inside
square brackets [la, . . . , lb] separated by a comma.

2. The electrons are distributed over all possible lji sub shells in all possible ways
for the particular ni, if there is a ∗ between ni and the number of electrons
M : ni ∗M .

3. Those ambiguous expressions are separated from other sub shells by a space,
too.
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For example

Enter the configuration (FAC notation ): 1s1 2*2 3[s,p]1

leads to all the following electron configurations as an input for the rest of the program:

1s1 2s2 3s1,
1s1 2s2 3p1,
1s1 2s12p1 3s1,
1s1 2s12p1 3p1,
1s1 2p2 3s1,
1s1 2p2 3p1.

Then all those electron configurations are processed by the program.

4.2. Sample procedure

For the ambiguous expression 1s1 2 ∗ 3 3s1 the results are shown below and in this
sample procedure a closer look is given to configuration 1s22s22p13s1. The whole output
is given in the appendix.
The program shows the actual configuration and the term symbols that belong to this
configuration as an indicator of progress on the standard system output:

Enter the configuration (FAC notation ): 1s2 2*3 3s1

____________

Obtaining term symbols for the configuration: [[1, 0, 2], [2, 0, 2], [2, 1, 1], [3, 0, 1]]

2p -1(1)1 3s+1(1)0

2p -1(1)1 3s+1(1)2

2p+1(3)3 3s+1(1)2

2p+1(3)3 3s+1(1)4

____________

Obtaining term symbols for the configuration: [[1, 0, 2], [2, 0, 1], [2, 1, 2], [3, 0, 1]]

2s+1(1)1 3s+1(1)0

2s+1(1)1 3s+1(1)2

2s+1(1)1 2p -1(1)0 2p+1(3)3 3s+1(1)2

2s+1(1)1 2p -1(1)0 2p+1(3)3 3s+1(1)4

2s+1(1)1 2p -1(1)2 2p+1(3)1 3s+1(1)0

2s+1(1)1 2p -1(1)2 2p+1(3)1 3s+1(1)2

2s+1(1)1 2p -1(1)2 2p+1(3)3 3s+1(1)2

2s+1(1)1 2p -1(1)2 2p+1(3)3 3s+1(1)4

2s+1(1)1 2p -1(1)2 2p+1(3)5 3s+1(1)4

2s+1(1)1 2p -1(1)2 2p+1(3)5 3s+1(1)6

2s+1(1)1 2p+2(0)1 3s+1(1)0

2s+1(1)1 2p+2(0)1 3s+1(1)2

2s+1(1)1 2p+2(4)3 3s+1(1)2

2s+1(1)1 2p+2(4)3 3s+1(1)4

2s+1(1)1 2p+2(4)5 3s+1(1)4

2s+1(1)1 2p+2(4)5 3s+1(1)6

____________

Obtaining term symbols for the configuration: [[1, 0, 2], [2, 1, 3], [3, 0, 1]]
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2p+1(3)3 3s+1(1)2

2p+1(3)3 3s+1(1)4

2p -1(1)1 2p+2(0)1 3s+1(1)0

2p -1(1)1 2p+2(0)1 3s+1(1)2

2p -1(1)1 2p+2(4)3 3s+1(1)2

2p -1(1)1 2p+2(4)3 3s+1(1)4

2p -1(1)1 2p+2(4)5 3s+1(1)4

2p -1(1)1 2p+2(4)5 3s+1(1)6

2p+3(3)3 3s+1(1)2

2p+3(3)3 3s+1(1)4

This is pdfTeX , Version 3.1415926 -2.4 -1.40.13 (TeX Live 2012)

restricted \write18 enabled .

entering extended mode

As an example, the LS-coupling term symbols for the orbital configuration 1s22s22p13s1

are given below. They are sorted by means of Hund’s rules in order of descending energy
from bottom to top:

(((1s2 (1S) 2s22p1 (2P )) 2P ) 3s1 (2S)) 3P2

(((1s2 (1S) 2s22p1 (2P )) 2P ) 3s1 (2S)) 3P1

(((1s2 (1S) 2s22p1 (2P )) 2P ) 3s1 (2S)) 3P0

(((1s2 (1S) 2s22p1 (2P )) 2P ) 3s1 (2S)) 1P1

The first term symbol has the following structure: The electrons in the shell with n1

couple to a term 1S and the electrons in the shell with n2 = 2 couple to yield a term
2P . Those two shell related terms couple together resulting in a term 2P . “Then” all
electrons (here one) in the shell with n3 = 3 have no other choice (in this case) but to
couple to yield the term 2S. This term couples with the term that includes all inner
shells (2P ) and so the final term describing the whole system arises: 3P . As the 3 in the
top left index suggests, this term splits into three term symbols (triplet) and the final
term symbol with the maximum value of J = 2 = L + S (see triangular condition 2.66
and figure 2.2.1) is: 3P2. This final term symbol equals the simple version of the term
symbol notation and can easily be read as the term symbol on the right:

(((1s2 (1S) 2s22p1 (2P )) 2P ) 3s1 (2S)) 3P2 → 3P2

The three other terms are structured similarly. This is maybe a boring example, because
all the terms have the same history. But this one was chosen, because the important
point was to delight the process how one of those level histories comes to be1. The
difference here in the resulting term symbols is based on the last two coupling steps: on
the one hand the coupling of L and S to J and on the other on the two last total spins
of 2P and 2S coupling to the final S.

The resulting jj-coupling term symbols for the same example as for LS-coupling (1s22s22p13s1)
are:

1Obviously the parental history becomes more important for different histories of multiple occurrences
of the same simple term symbol.
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(

(

(

[1s+]20 [2s+]20
)

0
[2p−]11

2

)

1
2

[3s+]11
2

)

0(

(

(

[1s+]20 [2s+]20
)

0
[2p−]11

2

)

1
2

[3s+]11
2

)

1(

(

(

[1s+]20 [2s+]20
)

0
[2p+]13

2

)

3
2

[3s+]11
2

)

1(

(

(

[1s+]20 [2s+]20
)

0
[2p+]13

2

)

3
2

[3s+]11
2

)

2

To clarify this somehow complicated notation the generation of a term symbol is ex-

amined. The last term symbol

(

(

(

[1s+]20 [2s+]20
)

0
[2p+]13

2

)

3
2

[3s+]11
2

)

2

is of the following

structure: The electrons in the subshell with n1 = 1 and l1 = 0 couple to the single
electron total angular momenta j = 1

2
. Those are grouped together, because they are

equivalent electrons: [1s+]20. These two couple to the total angular momentum j1 = 0,
as the 0 in the lower right index denotes. Those in the second subshell with n2 = 2
and l2 = 0 also couple each to j = 1

2
. Again the only possible way to couple to a total

angular momentum is to yield j2 = 0, because as in the case of the first subshell the
Pauli exclusion principle forces the one electron to have mj = +1

2
and the other electron

to have mj = −1
2
. Those two parts of a set of equivalent electrons couple and have a

total subshell angular momentum of 0. The electron in the subshell with n3 = 2 and
l3 = 1 has a j of 3

2
and all the electrons in this subshell (here just one) couple to yield

j3 =
3
2
, because of the spin down denoted by the plus sign +. This angular momentum

and the j1&2 = 0 couple together to form a j1&2&3 = 3
2
. The electron in the subshell

with n4 = 3 and l4 = 0 again has no other chance than to have a j = 1
2
≡ s+ and all the

electrons in this subshell (again one) couple to a j4 =
1
2
. This group angular momentum

couples with the j1&2&3 to the whole system total angular momentum J = j1&2&3&4 = 2.
There is no “◦” in the top left index, because the parity is even. The three other term
symbols are built similarly. The simple version of this jj-term symbol is obtained by
picking out the single electron angular momenta ji and J :

(

(

((

1s21
2
, 1
2

)

0

(

2s21
2
, 1
2

)

0

)

0

(

2p13
2

)

3
2

)

3
2

(

3s11
2

)

1
2

)

2 ⇒
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
2 ,

1
2

)

2
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5. Conclusion

The purpose of computing is insight,
not numbers.

Richard Hamming

The purpose of this work was to write a program that enables the user to get an assigned
jj-coupling term symbol for each LS-term symbol and vice versa. This should be a tool
to compare the energetic structure delivered by atomic codes for astrophysics. The
original idea of and need for this assignment arose in the master thesis of Nathalie Hell
(2012). There the idea was to sort and assign the term symbols by means of J manually,
but it turned up that this is a hard task, especially for more complex configurations.
Hence it was self-evident trying to do things automatically using a program and I started
to write a program.
While writing a simple version of the program, a problem arose with several terms
independent of the sorting issues that were mentioned in the theory section. Some
terms occurred more than once and mapping two different sized lists with elements
that have multiple occurrences are not good candidates for finding a bijection between
them. The solution was to take their parental history into account and this was done
in the style of the results that are planned to be compared in the near future: FAC
and AUTOSTRUCTURE. Now those lists have – as they should, otherwise something
would be fairly wrong – the same number of entries. So one could at least check whether
there are all possible term symbols due to angular momentum coupling or not. This
is yet another advantage of having done this work. Those term symbols are sorted
and despite of this sorting being not aware of objection, the result delivers a tool to
specify approximately which LS-coupling term symbol belongs energetically to which
jj-coupling term symbol.
I tested the program by comparing the results with results in Bransden and Joachain
(2003) and several papers (Tuttle, 1967; Doggett and Sutcliffe, 1998; Rubio and Perez,
1986; Orofino and Faria, 2010; Gorman, 1973; Gauerke and Campbell, 1994). Although
these papers do not deal with the parental histories, a comparison with them was useful,
because in all the cases the same values for J occurred. Those values occurred as many
times as my program produces another parental history. Thus the results the program
produces cannot be too wrong. Additionally both coupling schemes in program yield
the same amount of terms for each J in all examined cases. The comparison in means
of J was chosen, because it is the only good quantum number of the whole system that
for both coupling schemes.
As mentioned in the theory section the LS-coupling term symbols are sorted by means
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of Hund’s rules. To be able to assign the term symbols unambiguously one has to sort
the jj-coupling term symbols with a parallel set of rules. It seems that there are no
rules for an qualitative sorting of jj-coupling term symbols. Thus one has to calculate
numerically their energies and sort them quantitatively. In an extensive review of the
literature I was not able to find such rules. This is probably a result of the tendency
of nearly every author to mention only LS-coupling and if mentioning jj-coupling they
reduced their explanations to the bare minimum – with the exception of Bransden and
Joachain (2003), Condon and Shortley (1970), Condon and Odabasi (1980), but there
were no sorting patterns. Additionally, the results of the program showed that even if
there were such rules it would be very difficult or even impossible to assign by taking J
into account except for some easy configurations that also could be carried out by hand.
There is another problem that has not been mentioned yet. The two parental histories of
two term symbols in the two different schemes cannot be consistent in this work, because
in LS-coupling the program couples everything in a shell (same n) and then all those

shells successively to ~L and ~S, but for the jj-coupling term symbols the program couples
everything in a jj-subshell (same ni,li,ji). So the electrons do not just couple differently
(LS- versus jj-coupling), they couple differently partitioned in different groups (shell
versus jj-subshells). Thus those both histories are not consistent. This inconsistency
was accepted, because FAC (??) andPalmeri et al. (2008) have the same problem of
inconsistency in relation to each other and if one wants to compare their results, one
has to adopt their way of coupling. Thus my program has to speak their language to
fulfil its intention, namely a comparison of those codes.
The whole theory of Racah, Wigner and Weyl using constructs as Wigner-d-functions
or Racah’s 3-j-symbols was not examined because it would have exceeded the available
time for a Bachelor thesis, but maybe there an answer or hint could be found for fur-
ther theoretical investigations (Condon and Shortley, 1970; Condon and Odabasi, 1980;
Biedenharn, 1981).
Finally I hope – and further investigations will show or not – that my work obeys the
essence of the quote by Richard Hamming.
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Springer-Lehrbuch. Springer, 2007. ISBN 9783540337959.

P. A. M. Dirac. The Quantum Theory of the Electron. Proc. R. Soc. Lond. A, 117:610,
1928. doi: 10.1098/rspa.1928.0023.

Graham Doggett and Brian Sutcliffe. A modern approach to l-s coupling in the theory
of atomic spectra. J Chem Ed, 75(1):110, 1998.

46



Robert Eisberg. Quantum physics of atoms, molecules, solids, nuclei, and particles.
Wiley, New York, 1985. ISBN 9780471873730.

Thomas Engel. Physical chemistry. Pearson Benjamin Cummings, San Francisco, 2006.
ISBN 080533842X.

Richard Feynman, Robert B. Leighton, and Matthew L. Sands. The Feynman Lectures
on Physics. Addison-Wesley, Munich, 1963. 3 volumes.

R.P. Feynman. QED: The Strange Theory of Light and Matter. (Alix G. Mautner Memo-
rial Lectures). Alix G. Mautner Memorial Lectures. Princeton University Press, 1986.
ISBN 9780691083889.

T. Fließbach. Quantenmechanik. BI-Wiss.-Verlag, 1991. ISBN 9783411149711.

Harald Friedrich. Theoretical Atomic Physics. Springer-Verlag Berlin Heidelberg New
York, 1990.

Ensign Steven J. Gauerke and Mark L. Campbell. A simple, systmatic method for
determining j levels for jj coupling. Journal of Chemical Education, 71(6):457, 1994.
doi: 10.1021/ed071p457. URL http://pubs.acs.org/doi/abs/10.1021/ed071p457.

Mel Gorman. Rules for writing ground state russell-saunders symbols. Journal of Chem-
ical Education, 50(3):189, 1973. doi: 10.1021/ed050p189. URL http://pubs.acs.

org/doi/abs/10.1021/ed050p189.

M. F. Gu. Indirect X-Ray Line-Formation Processes in Iron L-Shell Ions. 582:1241–1250,
January 2003. doi: 10.1086/344745.

M. F. Gu. Dielectronic Recombination Rate Coefficients of Na-like Ions from Mg II to
Zn XX Forming Mg-like Systems. 153:389–393, July 2004. doi: 10.1086/421328.

C. W. Haigh. The theory of atomic spectroscopy: jj coupling, intermediate coupling,
and configuration interaction. Journal of Chemical Education, 72(3):206, 1995. doi:
10.1021/ed072p206. URL http://pubs.acs.org/doi/abs/10.1021/ed072p206.

Natalie Hell. Laboratory astrophysics: Investigating the mystery of low charge states
of si and s in the hmxb cyg x-1. Master’s thesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg, 2012.

Gerhard Herzberg. Atomic spectra and atomic structure. Prentice Hall, Inc., 1937.

Friedrich Hund. Zur Deutung verwickelter Spektren, insbesondere der Elemente
Scandium bis Nickel. June 1925. URL http://www.springerlink.com/content/

v64t7r610k67k731/.

R. Jagannathan. On generalized Clifford algebras and their physical applications. ArXiv
e-prints, May 2010.

47



L. D. Landau and E. M. Lifshitz. Quantum mechanics, Vol. 3. Course of theoretical
physics / by L. D. Landau and E. M. Lifshitz, in 7 Vol. Butterworth-Heinemann, 2
edition, January 1987. ISBN 0750627670.

Hugo Orofino and Roberto B. Faria. Obtaining the electron angular momentum coupling
spectroscopic terms, jj. Journal of Chemical Education, 87(12):1451–1454, 2010. doi:
10.1021/ed1004245. URL http://pubs.acs.org/doi/abs/10.1021/ed1004245.

P. Palmeri, P. Quinet, C. Mendoza, M. A. Bautista, J. Garćıa, and T. R. Kallman.
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A. Example output

This is the .txt FAC output of the program for the example in the usage section:

2p-1(1)1 3s+1(1)0
2p-1(1)1 3s+1(1)2
2p+1(3)3 3s+1(1)2
2p+1(3)3 3s+1(1)4
2s+1(1)1 3s+1(1)0
2s+1(1)1 3s+1(1)2
2s+1(1)1 2p-1(1)0 2p+1(3)3 3s+1(1)2
2s+1(1)1 2p-1(1)0 2p+1(3)3 3s+1(1)4
2s+1(1)1 2p-1(1)2 2p+1(3)1 3s+1(1)0
2s+1(1)1 2p-1(1)2 2p+1(3)1 3s+1(1)2
2s+1(1)1 2p-1(1)2 2p+1(3)3 3s+1(1)2
2s+1(1)1 2p-1(1)2 2p+1(3)3 3s+1(1)4
2s+1(1)1 2p-1(1)2 2p+1(3)5 3s+1(1)4
2s+1(1)1 2p-1(1)2 2p+1(3)5 3s+1(1)6
2s+1(1)1 2p+2(0)1 3s+1(1)0
2s+1(1)1 2p+2(0)1 3s+1(1)2
2s+1(1)1 2p+2(4)3 3s+1(1)2
2s+1(1)1 2p+2(4)3 3s+1(1)4
2s+1(1)1 2p+2(4)5 3s+1(1)4
2s+1(1)1 2p+2(4)5 3s+1(1)6
2p+1(3)3 3s+1(1)2
2p+1(3)3 3s+1(1)4
2p-1(1)1 2p+2(0)1 3s+1(1)0
2p-1(1)1 2p+2(0)1 3s+1(1)2
2p-1(1)1 2p+2(4)3 3s+1(1)2
2p-1(1)1 2p+2(4)3 3s+1(1)4
2p-1(1)1 2p+2(4)5 3s+1(1)4
2p-1(1)1 2p+2(4)5 3s+1(1)6
2p+3(3)3 3s+1(1)2
2p+3(3)3 3s+1(1)4

On the next page the .pdf output of the program for the same example is given.
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L-S- and jj-coupling term symbols:

Electron orbital configurations(n1l
x1
1 . . . nml

xm
m ): 1s22s22p13s1, 1s22s12p23s1, 1s22p33s1

L-S-coupling jj-coupling

(((1s2(1S) 2s22p1(2P )) 2P ) 3s1(2S)) 3P2 ((([1s+]20[2s+]20)0[2p−]11
2

) 1
2
[3s+]11

2

)0
(((1s2(1S) 2s22p1(2P )) 2P ) 3s1(2S)) 3P1 ((([1s+]20[2s+]20)0[2p−]11

2

) 1
2
[3s+]11

2

)1

(((1s2(1S) 2s22p1(2P )) 2P ) 3s1(2S)) 3P0 ((([1s+]20[2s+]20)0[2p+]13
2

) 3
2
[3s+]11

2

)1

(((1s2(1S) 2s22p1(2P )) 2P ) 3s1(2S)) 1P1 ((([1s+]20[2s+]20)0[2p+]13
2

) 3
2
[3s+]11

2

)2
(((1s2(1S) 2s12p2(4P )) 4P ) 3s1(2S)) 5P3 ((([1s+]20[2s+]11

2

) 1
2
[2p−]20) 1

2
[3s+]11

2

)0
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2

) 1
2
[2p−]20) 1

2
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2
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2
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2

)0[2p+]13
2
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2
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2

) 1
2
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2

)0[2p+]13
2

) 3
2
[3s+]11

2

)2

(((1s2(1S) 2s12p2(2D)) 2D) 3s1(2S)) 3D2 (((([1s+]20[2s+]11
2
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2
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2

)1[2p+]13
2

) 1
2
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2
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(((1s2(1S) 2s12p2(2S)) 2S) 3s1(2S)) 1S0 ((([1s+]20[2s+]11
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(((1s2(1S) 2p3(2P )) 2P ) 3s1(2S)) 3P0 ((([1s+]20[2p−]11

2

) 1
2
[2p+]22) 5

2
[3s+]11

2

)2

(((1s2(1S) 2p3(4S)) 4S) 3s1(2S)) 3S1 ((([1s+]20[2p−]11
2

) 1
2
[2p+]22) 5

2
[3s+]11

2

)3

(((1s2(1S) 2p3(2D)) 2D) 3s1(2S)) 1D2 (([1s+]20[2p+]33
2

) 3
2
[3s+]11

2

)1
(((1s2(1S) 2p3(2P )) 2P ) 3s1(2S)) 1P1 (([1s+]20[2p+]33

2

) 3
2
[3s+]11

2

)2

Sorting and nomenclature: In the L-S-table the term symbols are sorted by means of the empiric Hund’ rules in increasing
order. Hence the ground state is on top. The jj term symbols are sorted with respect to the maximal vectorial sum of the
total angular momenta of the electrons, not with respect to the value of J assigned in the lower right index.
L and S are denoting the total angular momentum and spin, while ji and J are refering to the total angular momentum of the
ith electron and of the whole configuration. There are xi electron in the orbital with main quantum number ni and angular
momentum quantum number li that is given in the conventional spectroscopic form: s, p, d, f, g, h, . . . for 0, 1, 2, 3, 4, 5, . . . .
More precisely the L-S-coupling term symbols are in the form:

(· · · ((n1l
x1
1 (2S1+1L1) n2l

x2
2 (S2+1L2))

2S1&2+1L1&2) · · ·nml
xm

m (Sm+1Lm))
2S+1L

(◦)
J

and the jj-coupling term symbols are in the following form:

(· · · ((n1l
x1
1 j1,··· ,jx1

)js1(n2l
x2
2 jx1+1,··· ,jx1+x2

)js2)j1&2
· · · (nml

xm

m jN−xm+1,··· ,jN
)jsm)

(◦)
J .
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B. Code

In this appendix the code – higlighted via minted by Konrad Rudolph Rudolph (2011)
– of the script that is the main part of this thesis:

#! /usr/bin/env python

’’’

This is a python script for the production and mapping

(as good as possible with Hund’s rules)

of L-S- and jj-coupling term symbols.

This script was written by Alexander Laska,

Friedrich-Alexander-University Nuremberg-Erlangen,

as part of his bachelor thesis.

It was tested using some easy examples and is

in no sense a complete and faultless answer

to the question of mapping coupling term symbols.

Its functions and algorithms are described in the thesis.

’’’

import copy

import itertools

import math

import operator

’’’

Enable FAC output (if facbool is True the outputs both

in the .tex and the .txt file are like the output

of the atomic code FAC by Ming Gu, if it is False

the output in the .pdf keeps mind

of a subshell-subshell-su... successive coupling

and the also the .txt file, but here with

a FAC based style). Normally the intended use

of the program expects facbool = True.

The input is always in the style of FAC input.

’’’

facbool = True
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’’’

Convention for the translation between

numbers (indices) and letters

expressing angular momentum eigenvalues

’’’

confnom = [’s’, ’p’, ’d’, ’f’, ’g’, ’h’, ’i’, ’k’,

’l’, ’m’, ’n’, ’o’, ’q’, ’r’, ’t’, ’u’,

’v’, ’w’, ’x’, ’y’, ’z’, ’a’, ’b’, ’c’, ’e’]

lsconv = [’S’, ’P’, ’D’, ’F’, ’G’, ’H’, ’I’, ’K’,

’L’, ’M’, ’N’, ’O’, ’Q’, ’R’, ’T’, ’U’,

’V’, ’W’, ’X’, ’Y’, ’Z’, ’A’, ’B’, ’C’, ’E’]

# Open a text document to write the FAC output into it

txtout = open(’hclsvsjj.txt’, ’w’)

’’’

Improved (FAC) version of input interpretation

(2s1, * and [x,y,...] notation)

’’’

def read_orbconf_fac():

# Reading the input and handling it to the orbstr

orbstr = str(raw_input("Enter the configuration (FAC notation): "))

# Splitting the input at spaces and the other meta symbols

orbconfttt = orbstr.split(’ ’)

orbconftt = []

for y in orbconfttt:

for x in confnom:

if x in y and ’[’ not in y:

orbconftt.append(list(y.rpartition(x)))

if ’*’ in y:

orbconftt.append(list(y.rpartition(’*’)))

if ’[’ in y:

orbconftt.append(list(y.rpartition(’[’)))

orbconft = []

for y in orbconftt:

if ’]’ in y[-1]:

a = y[-1].rpartition(’]’)
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b = list([y[0],a[0],a[2]])

orbconft.append(b)

else:

orbconft.append(y)

# Producing all possible fillings of subshells ([])

orbconf = []

def fillings(n,l,x):

x = int(x)

temp = []

for y in range(len(l)):

temp.append(list(range(x + 1)))

temp = list(itertools.product(*temp))

output = []

for y in temp:

if sum(y) == x:

output.append(list(y))

for y in range(len(l)):

z = 0

while z < len(output):

if output[z][y] > 2*(2*int(l[y]) + 1):

output.remove(output[z])

else:

z += 1

tempout = []

for y in output:

tempout.append(list(zip(l,y)))

output = []

for y in range(len(tempout)):

temptemp = []

for z in range(len(tempout[y])):

if tempout[y][z][1] != 0:

temp = [int(n),tempout[y][z][0],tempout[y][z][1]]

temptemp.append(temp)

output.append(temptemp)

return output

# Producing all possible fillings of subshells (*)

run = []

for y in orbconft:

if y[1] == ’*’:

l = range(int(y[0]))

run.append(fillings(y[0],l,y[2]))
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if len(y[1]) > 1:

temp = str(y[1])

l = []

while len(temp) > 1:

l.append(confnom.index(temp[0]))

temp = str(temp[2:])

l.append(confnom.index(temp[0]))

run.append(fillings(y[0],l,y[2]))

if len(y[1]) == 1 and y[1] != ’*’:

run.append(fillings(y[0],[confnom.index(y[1][0])],y[2]))

# Stiching together all combinations for the indivdual subshells

runoutput = list(itertools.product(*run))

output = []

for y in range(len(runoutput)):

output.append(list(runoutput[y]))

put = []

for y in output:

put.append(list(flatten(y)))

return put

# Latex all jj terms

def texalljj(L, orb, facbool):

output = []

sortjj = []

for x in range(len(L)):

a = texjjt(L[x], orb, facbool)

output.append(a[0])

sortjj.append(a[1])

txtout.write(str(a[2]))

txtout.write(’\n’)

c = zip(output,sortjj)

c.sort(key=lambda x: x[1],reverse=True)

b = []

e = []

for x in range(len(c)):

b.append(c[x][0])

e.append(c[x][1])

output = b

return output
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# Producing fac compatible orbital configurations (nl+ and nl-,l != 0)

def orbfac(L):

output = []

facoutput = []

for x in L:

if x[1] == 0:

facoutput.append(str(x[0]) + confnom[x[1]] + ’+’)

output.append(x)

else:

facoutput.append(str(x[0]) + confnom[x[1]] + ’-’)

output.append(x)

facoutput.append(str(x[0]) + confnom[x[1]] + ’+’)

output.append(x)

return facoutput

# Latexable version of one jj coupling term symbol producing function

def texjjt(L, orb, facbool):

output = []

sortjj = 0

fac = ’’

# For the case of just one part. orb. conf.

if len(orb) == 1:

’’’

First the orbital configuration is appended

and then the angular momenta

’’’

print L

if facbool is False:

string = r’$(’ + str(orb[0]) + r’_{’

else:

string = r’$[’ + str(orb[0][0:3]) + r’]^{’

if facbool is False:

fac += orb[0][0]

fac += orb[0][1]

else:
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fac += orb[0][:3]

factemp = []

factemptemp = []

if facbool is False:

if int(2*L[0][-1]) % 2 == 0:

string += str(int(L[0][-1]))

factemptemp.append(int(2*L[0][-1]))

sortjj += L[0][-1]

else:

string += r’\frac{’

string += str(int(2*L[0][-1]))

factemptemp.append(int(2*L[0][-1]))

string += r’}{2}’

sortjj += L[0][-1]

if len(L) > 2:

for x in range(1, len(L) - 1):

string += r’,’

if int(2*L[x][-1]) % 2 == 0:

string += str(int(L[x][-1]))

factemptemp.append(int(2*L[x][-1]))

sortjj += L[x][-1]

else:

string += r’\frac{’

string += str(int(2*L[x][-1]))

factemptemp.append(int(2*L[x][-1]))

string += r’}{2}’

sortjj += L[x][-1]

factemp.append([max(factemptemp),’+’,

factemptemp.count(max(factemptemp))])

factemp.append([min(factemptemp),’-’,

factemptemp.count(min(factemptemp))])

if factemp[0][2] >= factemp[1][2]:

fac += str(factemp[0][1])

fac += str(factemp[0][2])

else:

fac += str(factemp[1][1])

fac += str(factemp[1][2])

string += r’}’

# Appending the local total J

else:

fac += str(len(L) - 1)

string += str(len(L) - 1)

string += r’}’

if int(2*L[-1]) % 2 == 0:
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string += str(int(L[-1])) + ’}’

fac += ’(’

fac += str(int(2*L[-1]))

fac += ’)’

fac += str(int(2*L[-1]))

else:

string += r’\frac{’

string += str(int(2*L[-1]))

string += r’}{2}}’

fac += ’(’

fac += str(int(2*L[-1]))

fac += ’)’

fac += str(int(2*L[-1]))

else:

’’’

Flattening the deeply nested structure

containing the results of the successive coupling

’’’

temp = []

copy = list(L)

for x in range(len(orb)):

if x < len(orb) - 1:

temp.append(copy[-1])

temp.append(copy[-2][-1])

copy = list(copy[-2][-2])

else:

temp.append(copy)

temp.reverse()

L = list(temp)

’’’

First the orbital configuration is appended

and then the angular momenta

’’’

string = ’$’

for x in range(len(orb) - 1):

string += r’(’

if facbool is False:

string += str(orb[0]) + r’_{’

else:

if L[0][0][2] != 0:
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string += r’[’ + str(orb[0][0:3]) + r’]^{’

else:

string += r’[’ + str(orb[0][0:2]) + r’0]^{’

if facbool is False:

fac += orb[0][0]

fac += orb[0][1]

else:

if L[0][0][2] != 0:

fac += orb[0][:3]

else:

fac += orb[0][:2]

fac += ’0’

factemp = []

factemptemp = []

if facbool is False:

if int(2*L[0][0][-1]) % 2 == 0:

string += str(int(L[0][0][-1]))

sortjj += L[0][0][-1]

factemptemp.append(int(2*L[0][0][-1]))

else:

string += r’\frac{’

string += str(int(2*L[0][0][-1]))

string += r’}{2}’

sortjj += L[0][0][-1]

factemptemp.append(int(2*L[0][0][-1]))

if len(L[0]) > 2:

for x in range(1, len(L[0]) - 1):

string += r’,’

if int(2*L[0][x][-1]) % 2 == 0:

string += str(int(L[0][x][-1]))

sortjj += L[0][x][-1]

factemptemp.append(int(2*L[0][x][-1]))

else:

string += r’\frac{’

string += str(int(2*L[0][x][-1]))

string += r’}{2}’

sortjj += L[0][x][-1]

factemptemp.append(int(2*L[0][x][-1]))

# Appending the local total J

string += r’})_{’

factemp.append([max(factemptemp),

’+’,factemptemp.count(max(factemptemp))])

factemp.append([min(factemptemp),

’-’,factemptemp.count(min(factemptemp))])
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if factemp[0][2] >= factemp[1][2]:

fac += str(factemp[0][1])

fac += str(factemp[0][2])

else:

fac += str(factemp[1][1])

fac += str(factemp[1][2])

else:

fac += str(len(L[0]) - 1)

string += str(len(L[0]) - 1)

string += r’}_{’

if int(2*L[0][-1]) % 2 == 0:

string += str(int(L[0][-1]))

fac += ’(’

fac += str(int(2*L[0][-1]))

fac += ’)’

fac += str(int(2*L[0][-1]))

else:

string += r’\frac{’

string += str(int(2*L[0][-1]))

string += r’}{2}’

fac += ’(’

fac += str(int(2*L[0][-1]))

fac += ’)’

fac += str(int(2*L[0][-1]))

if facbool is False:

string += r’} (’

else:

string += r’} ’

fac += ’ ’

# Appending the local total J

if facbool is False:

string += str(orb[1]) + r’_{’

else:

if L[1][0][2] != 0:

string += r’[’ + str(orb[1][0:3]) + r’]^{’

else:

string += r’[’ + str(orb[1][0:2]) + r’0]^{’

if facbool is False:

fac += orb[1][0]

fac += orb[1][1]

else:

if L[1][0][2] != 0:

fac += orb[1][:3]

else:
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fac += orb[1][:2]

fac += ’0’

factemp = []

factemptemp = []

if facbool is False:

if int(2*L[1][0][-1]) % 2 == 0:

string += str(int(L[1][0][-1]))

sortjj += L[1][0][-1]

factemptemp.append(int(2*L[1][0][-1]))

else:

string += r’\frac{’

string += str(int(2*L[1][0][-1]))

string += r’}{2}’

sortjj += L[1][0][-1]

factemptemp.append(int(2*L[1][0][-1]))

if len(L[1]) > 2:

for x in range(1, len(L[1]) - 1):

string += r’,’

if int(2*L[1][x][-1]) % 2 == 0:

string += str(int(L[1][x][-1]))

sortjj += L[1][x][-1]

factemptemp.append(int(2*L[1][x][-1]))

else:

string += r’\frac{’

string += str(int(2*L[1][x][-1]))

string += r’}{2}’

sortjj += L[1][x][-1]

factemptemp.append(int(2*L[1][x][-1]))

# Appending the local total J

string += r’})_{’

factemp.append([max(factemptemp),’+’,

factemptemp.count(max(factemptemp))])

factemp.append([min(factemptemp),’-’,

factemptemp.count(min(factemptemp))])

if factemp[0][2] >= factemp[1][2]:

fac += str(factemp[0][1])

fac += str(factemp[0][2])

else:

fac += str(factemp[1][1])

fac += str(factemp[1][2])

else:

fac += str(len(L[1]) - 1)

string += str(len(L[1]) - 1)

string += r’}_{’
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if int(2*L[1][-1]) % 2 == 0:

string += str(int(L[1][-1]))

fac += ’(’

fac += str(int(2*L[1][-1]))

fac += ’)’

else:

string += r’\frac{’

string += str(int(2*L[1][-1]))

string += r’}{2}’

fac += ’(’

fac += str(int(2*L[1][-1]))

fac += ’)’

string += r’})_{’

if int(2*L[2]) % 2 == 0:

string += str(int(L[2])) + ’}’

fac += str(int(2*L[2]))

else:

string += r’\frac{’

string += str(int(2*L[2]))

string += r’}{2}}’

fac += str(int(2*L[2]))

fac += ’ ’

a = 3

for y in range(2, len(orb)):

’’’

First the orbital configuration

is appended and then the angular momenta

’’’

if facbool is False:

string += r’ (’ + str(orb[y]) + r’_{’

else:

if L[a][0][2] != 0:

string += r’[’ + str(orb[y][0:3]) + r’]^{’

else:

string += r’[’ + str(orb[y][0:2]) + r’0]^{’

if facbool is False:

fac += orb[y][0]

fac += orb[y][1]

else:

if L[a][0][2] != 0:

fac += orb[y][:3]
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else:

fac += orb[y][:2]

fac += ’0’

factemp = []

factemptemp = []

if facbool is False:

if int(2*L[a][0][-1]) % 2 == 0:

string += str(int(L[a][0][-1]))

sortjj += L[a][0][-1]

factemptemp.append(int(2*L[a][0][-1]))

else:

string += r’\frac{’

string += str(int(2*L[a][0][-1]))

string += r’}{2}’

sortjj += L[a][0][-1]

factemptemp.append(int(2*L[a][0][-1]))

if len(L[a]) > 2:

for x in range(1, len(L[a]) - 1):

string += r’,’

if int(2*L[a][x][-1]) % 2 == 0:

string += str(int(L[a][x][-1]))

sortjj += L[a][x][-1]

factemptemp.append(int(2*L[a][x][-1]))

else:

string += r’\frac{’

string += str(int(2*L[a][x][-1]))

string += r’}{2}’

sortjj += L[a][x][-1]

factemptemp.append(int(2*L[a][x][-1]))

’’’

The total angular momentum for all

equivalent electrons has to be appended last

’’’

string += r’})_{’

factemp.append([max(factemptemp),’+’,

factemptemp.count(max(factemptemp))])

factemp.append([min(factemptemp),’-’,

factemptemp.count(min(factemptemp))])

if factemp[0][2] >= factemp[1][2]:

fac += str(factemp[0][1])

fac += str(factemp[0][2])

else:

fac += str(factemp[1][1])

fac += str(factemp[1][2])
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else:

fac += str(len(L[a]) - 1)

string += str(len(L[a]) - 1)

string += r’}_{’

if int(2*L[a][-1]) % 2 == 0:

string += str(int(L[a][-1])) + ’}’

fac += ’(’

fac += str(int(2*L[a][-1]))

fac += ’)’

else:

string += r’\frac{’

string += str(int(2*L[a][-1]))

string += r’}{2}}’

fac += ’(’

fac += str(int(2*L[a][-1]))

fac += ’)’

a += 1

’’’

The whole system total angular momentum

for all has to be appended finally

’’’

string += r’)_{’

if int(2*L[a]) % 2 == 0:

string += str(int(L[a])) + ’}’

fac += str(int(2*L[a]))

else:

string += r’\frac{’

string += str(int(2*L[a]))

string += r’}{2}}’

fac += str(int(2*L[a]))

fac += ’ ’

a += 1

’’’

Filtering out all full subshells

of inequivalent electrons

that are supressed by the FAC notation

’’’

dec = fac.split()

c = 0

d = len(dec)

while len(dec) > 1 and c < d:
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if dec[c][2] == ’0’:

del dec[c]

d -= 1

else:

c += 1

a = 0

b = len(dec)

while len(dec) > 1 and a < b:

#if dec[a][5] == ’0’:

if dec[a][2] == ’+’:

spin = 0.5

else:

spin = -0.5

#print dec[a], 2*(confnom.index(dec[a][1]) + spin) + 1

if str(int((2*(confnom.index(dec[a][1]) + spin) + 1))) == dec[a][3]:

del dec[a]

b -= 1

else:

a += 1

tempdec = ’’

for x in dec:

tempdec += x

tempdec += ’ ’

dec = str(tempdec)

print dec

stringsplit = string.split(’[’)

a = 1

b = len(stringsplit)

delcount = 0

while len(stringsplit) > 2 and a < b:

if stringsplit[a][2] == ’0’:

del stringsplit[a]

delcount += 1

b -= 1

else:

a += 1

stringsplit[0] = stringsplit[0][:len(stringsplit)-delcount]

stringim = ’’

for x in range(len(stringsplit) - 1):

stringim += stringsplit[x]

stringim += ’[’

stringim += stringsplit[-1]

output = [stringim, sortjj, dec]

return output
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# Successive coupling of still coupled subshells

def sucjjsh(L):

output = []

’’’

For all the cases of one, two or more

different successive couplings are neccessary:

non, one or the real successive coupling.

The values to be coupled are handled to lsrange()

to produce all values from |j_1 - j_2| to

j_1 + j_2 in steps of size one.

If there are more then one subshells the result

of the last coupling is j_1

and the next subshells J is j_2.

’’’

if len(L) == 1:

output = L[0]

return output

if len(L) > 1:

for y in range(len(L[0])):

for z in range(len(L[1])):

a = lsrange(L[0][y][-1], L[1][z][-1])

for x in range(len(a)):

output.append([[L[0][y], L[1][z]], a[x]])

if len(L) == 2:

return output

if len(L) > 2:

for x in range(2, len(L)):

temp = []

for y in range(len(output)):

for z in range(len(L[x])):

a = lsrange(output[y][-1], L[x][z][-1])

for k in range(len(a)):

temp.append([[output[y], L[x][z]], a[k]])

output = list(temp)

return output

’’’
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Feeding all subshells of equivalent electrons

in to jjterms() to obtain the term symbols

’’’

def sucjjfac(L):

output = []

for x in L:

if x[1] == 0:

output.append([jjterms([x])])

else:

temp = jjtermsfac([x])

output.append(temp)

new = list(itertools.product(*output))

output = []

for x in new:

output.append(list(x))

final = []

for x in output:

temp = []

for y in x:

temp.extend(list(y))

a = []

for y in temp:

b = []

b.append(y)

a.append(b)

final.append(a)

return final

# Feeding all subshells into jjterm() to obtain

def sucjj(L):

output = []

for x in range(len(L)):

output.append(jjterms([L[x]]))

return output

# Producing the whole LS term symbol list in a latex ready state

def LStex(L, orb):
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output = []

for x in range(len(L)):

output.append(Translatetermsymbol(L[x], orb))

return output

# Produce a single final term symbol final latex string

def Translatetermsymbol(L, orb):

output = r’$’

count = len(orb) - 1

for x in range(count):

output += r’(’

if len(L) == 1:

output += str(orb[0])

output += r’\ ’

output += str(L[0])

output += r’$’

return output

else:

output += r’(’

output += str(orb[0])

output += r’(’

output += str(L[0])

a = 0

for x in range(1, count + 1):

output += r’)\ ’

output += str(orb[x])

output += r’(’

a += 1

output += str(L[a])

output += r’))\ ’

a += 1

output += str(L[a])

return output

# Translate orbconf in a tex form (for jj terms)

def Translateorballjj(L):

output = []

L = list(flatten(L))
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for x in range(len(L)):

output.append(Translateorb(L[x]))

return output

# Translate orbconf in a tex form

def Translateorball(L):

output = []

for x in range(len(L)):

string = ’’

#L[x].reverse()

for y in range(len(L[x])):

string += str(Translateorb(L[x][y]))

output.append(string)

return output

# Translate whole term symbols list

def Translateall(L):

output = []

for x in range(len(L)):

output.append(Translatelist(L[x]))

return output

# Translate list

def Translatelist(L):

output = []

L.reverse()

for x in range(len(L) - 1):

output.append(TranslateLS(L[x]))

output.append(TranslateLSJ(L[-1]))

return output

# Three functions to translate terms and term symbols into string

def TranslateLSJ(L):

output = r’^{’ + str(int(2*float(L[0]) + 1))
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output += ’}’ + lsconv[L[1]] + r’_{’

if int(2*L[2]) % 2 == 0:

output += str(int(L[2])) + ’}’

else:

output += r’\frac{’

output += str(int(2*L[2]))

output += r’}{2}}’

return output

def TranslateLS(L):

output = r’^{’ + str(int(2*float(L[0]) + 1)) + ’}’ + lsconv[L[1]]

return output

def Translateorb(L):

output = str(L[0]) + confnom[L[1]] + ’^{’ + str(L[2]) + ’}’

return output

# LShisttex on whole list

def LShisttexwl(L, orb):

output = []

for x in range(len(L)):

output.append(LShisttex(L[x], orb))

return output

’’’

Function that converts the attached

"parents" of a term into latex code

’’’

def LShisttex(L, orb):

output = []

count = len(orb) - 1

steps = 0

temp = list(L)

if steps == 0 and count > 0:

70



output.append([L[0], L[1], L[2]])

output.append(L[3][1])

temp = L[3][0]

steps += 1

while steps < count:

output.append([temp[0], temp[1]])

output.append(temp[2][1])

temp = temp[2][0]

steps += 1

if steps == count:

output.append(temp)

return output

# Function "reading" the depth of a list of lists of litsts of....

depth = lambda L: isinstance(L, list) and max(map(depth, L))+1

’’’

Functions deciding whether a shell is more

than half filled (neccessary for fullfilling

the third of Hund’s rules)

’’’

def halffilled(L):

if L[-1][2] < 2*(L[-1][1]) + 1:

return False

else:

return True

# Append J to multils using lsrange()

def multiJ(multiin, rev):

output = []

for x in range(len(multiin)):

a = lsrange(multiin[x][0], multiin[x][1])

if rev == True:

a.reverse()

for y in range(len(a)):

b = [multiin[x][0], multiin[x][1], a[y]]

if len(multiin[x]) > 2:
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b.append(multiin[x][2])

output.append(b)

return output

# Successive use of mixing

def sucmixing(multif):

if len(multif) == 1:

multif = list(flatten(multif))

multif.sort(key=comparefield1, reverse=True)

multif.sort(key=comparefield0, reverse=True)

return multif

else:

output = []

output = mixing(multif[0], multif[1], 0)

if len(multif) > 2:

for x in range(2, len(multif)):

output = mixing(output, multif[x], 0)

output.sort(key=comparefield1, reverse=True)

output.sort(key=comparefield0, reverse=True)

return output

# Mixing function for partially coupled LS terms

def mixing(multi0, multi1, trig):

multi = [multi0, multi1]

output = []

for y in range(len(multi[0])):

for z in range(len(multi[1])):

a = lsrange(multi[0][y][0], multi[1][z][0])

b = lsrange(multi[0][y][1], multi[1][z][1])

c = []

d = [multi[0][y], multi[1][z]]

for k in range(len(a)):

for l in range(len(b)):

c = [a[k], b[l]]

c.append(d)

output.append(c)

output.sort(key=comparefield1, reverse=True)

output.sort(key=comparefield0, reverse=True)

return output
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# Function for translation of LETTER -> number using lsconv

def translateLN(multi):

output = []

for x in range(len(multi)):

tempoutput = []

for y in range(len(multi[x])):

temptempoutput = []

temptempoutput.append((multi[x][y][0][1] - 1)*0.5)

for a in range(len(lsconv)):

if multi[x][y][0][2] == lsconv[a]:

temptempoutput.append(a)

if y == 0:

tempoutput.append(temptempoutput)

else:

if temptempoutput != tempoutput[-1]:

tempoutput.append(temptempoutput)

output.append(tempoutput)

return output

’’’

Paulifilter for a list of tuples of

lists of quantumnumbers in the form [[n,l,j],mj]

’’’

def paulifilter(qnum):

output = []

for x in range(len(qnum)):

a = 1

for y in range(len(qnum[x])):

for z in range(y + 1, len(qnum[x])):

if qnum[x][y] == qnum[x][z]:

a = 0

if a == 1:

output.append(qnum[x])

return output

# Removing duplicates in a list of tuples of lists in the outer layer

def unique_items(L):

output = []
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for x in range(len(L)):

L[x] = list(L[x])

L[x].sort()

for x in range(len(L)):

a = 1

for y in range(x + 1, len(L)):

if L[x] == L[y]:

a = 0

if a == 1:

output.append(L[x])

return output

# Function for the coupling values of one set of two j-like values

def lsrange(L, S):

a = abs(L - S)

b = L + S

lsrangeout = []

while a <= b:

lsrangeout.append(a)

a = a + 1

lsrangeoutput = reversed(lsrangeout)

return lsrangeout

# Function for reading the orbital configuration

def read_orbconf():

orbstr = str(raw_input("Enter the configuration: "))

orblist = orbstr.split(’;’)

orbconfttt = []

for x in orblist:

orbconfttt.append(x.lstrip(’(’))

orbconftt = []

for x in orbconfttt:

orbconftt.append(x.replace(’)’,’,’))

orbconft = []

for x in orbconftt:

orbconft.append(x.split(’,’))
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orbconf = []

for x in orbconft:

orbconf.append([int(x[0]),int(x[1]),int(x[2])])

return orbconf

# Compare two elements

def compareField(field):

def c(l1,l2):

return cmp(l1[field], l2[field])

return c

# Another set of comparing functions

def comparefield0(list):

return list[0]

def comparefield1(list):

return list[1]

# Function that generates an n-splittet orbconf list

def imorbconf(orbconf):

orbconf.sort(compareField(0))

a = [len(list(subgroup)) for key,

subgroup in itertools.groupby(orbconf, lambda x: x[0])]

iorbconf = []

b = 0

for x in range(len(a)):

temp = []

for y in range(a[x]):

temp.append(orbconf[b + y])

temp.sort(key=lambda liste:liste[1])

iorbconf.append(temp)

b += a[x]

return iorbconf

# Function for encoding the Weyl diagrams into mell containng diagrams
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def encode(declist, key):

enclist = []

for x in range(len(declist)):

enclist.append(key[declist[x] - 1])

return enclist

# Function for adding the m_ell values

def mell_add(weyld):

Mell = 0

for x in range(len(weyld[0])):

Mell = Mell + weyld[0][x]

for x in range(len(weyld[1])):

Mell = Mell + weyld[1][x]

return Mell

# Function that stores two lists into an Latex table

def latex(table, jtable, Parity, iorb):

header = open(’header.txt’, ’r’)

foot = open(’foot.txt’, ’r’)

lstext = open(’hclstext.txt’, ’r’)

f = open(’hclsvsjj.tex’, ’w’)

f.write(header.read())

f.write(str(lstext.read()))

f.write(r’\textbf{$L$-$S$- and $jj$-coupling term symbols:} \\’)

f.write(’\n’)

f.write(’\n’)

if len(iorb) == 1:

f.write(r’Electron orbital configuration’)

f.write(r’$(n_{1}l_{1}^{x_{1}} \dots n_{m}l_{m}^{x_{m}})$: ’)

else:

f.write(r’Electron orbital configurations’)

f.write(r’$(n_{1}l_{1}^{x_{1}} \dots n_{m}l_{m}^{x_{m}})$: ’)

f.write(r’$’)

for y in range(len(iorb) - 1):
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for x in range(len(iorb[y])):

f.write(str(iorb[y][x]))

f.write(r’$, $’)

for x in range(len(iorb[-1])):

f.write(str(iorb[-1][x]))

f.write(r’$\\’ + ’\n’)

f.write(r’\\’ + ’\n’)

f.write(r’\begin{longtable}{c|c}’ + ’\n’)

f.write(r’$L$-$S$-coupling & $jj$-coupling\\’ + ’\n’)

f.write(r’\hline ’)

f.write(r’\hline’)

f.write(r’ \\ ’ + ’\n’)

for x in range(len(table)):

for y in range(len(table[x])):

f.write(table[x][y])

f.write(r’^{’)

f.write(str(Parity[x][0][0][3]))

f.write(r’}$ & ’)

f.write(jtable[x][y])

f.write(r’^{’)

f.write(str(Parity[x][0][0][3]))

f.write(r’}$\\’)

f.write(’\n’)

f.write(foot.read())

’’’

Function for filling a column with

every possible filling with numbers from 1 up to n

’’’

def fill_column(columnl,n):

columnlist = []

prod = list(itertools.product(range(1,n+1), repeat=columnl))

countl = len(prod) - 1

while countl >= 0:

columnlist.append(prod[countl])

countl = countl - 1

return columnlist

’’’

Function that determines all possible

77



total spin values for a configuration like (n,l)x

’’’

def spin_list(S):

t = int(S)*(0.5)

slist = []

slist.append(t)

while t > 0.5:

t = t - 1

slist.append(t)

return slist

# Functions for monotonicity

def strictly_increasing(L):

return all(x<y for x, y in zip(L, L[1:]))

def strictly_decreasing(L):

return all(x>y for x, y in zip(L, L[1:]))

def non_increasing(L):

return all(x>=y for x, y in zip(L, L[1:]))

def non_decreasing(L):

return all(x<=y for x, y in zip(L, L[1:]))

# L-S-terms belonging to orbconf using the method of Dogget and Sutcliff

def lsterms(table):

lstext = open(’hclstext.txt’, ’w’)

# Parity

lpar = 0

for x in range(len(table)):

lpar =+ table[x][2] * table[x][1]

parity = pow(-1, lpar)

if parity == -1:

Parlab = ’\circ’

else:

Parlab = ’ ’

# Step (1)
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tablel = len(table)

count = 0

N = 0

n = 0

while count < tablel:

N = N + table[count][2]

n = n + 2* table[count][1] + 1

count = count + 1

# Step (2)

mell = []

for x in range(len(table)):

for y in range(2*table[x][1]+1):

mell.append(y - table[x][1])

# Step (3) & (4)

Ncount = int(N)

protoweyl = []

while Ncount >= N*0.5:

protoweyl.append(int(Ncount))

Ncount = Ncount - 1

# Step (5)

# Creates all fillings of Weyl diagrammes

weyl = []

for x in range(len(protoweyl)):

weyl.append(list(itertools.product(fill_column(protoweyl[x],n),

fill_column(N - protoweyl[x],n))))

# Sorts out all fillings that are not strictly increasing in a row

tempweyl = []

for x in range(len(weyl)):

for y in range(len(weyl[x])):

a = strictly_increasing(list(weyl[x][y][0]))

b = strictly_increasing(list(weyl[x][y][1]))

if a and b and len(weyl[x][y][0]) >= len(weyl[x][y][1]):

tempweyl.append([list(weyl[x][y][0]),list(weyl[x][y][1])])

# Sorts out all fillings that are not nondecreasing

79



temptempweyl = []

for x in range(len(tempweyl)):

det = 1

if len(tempweyl[x][1]) > 0:

det = 1

for y in range(len(tempweyl[x][1])):

if tempweyl[x][1][y] >= tempweyl[x][0][y]:

det = det * 1

else:

det = det * 0

if det == 1:

temptempweyl.append(tempweyl[x])

# Sorts out all Weyl diagram for that the number of electrons is wrong

mell_im = []

count = 1

for x in range(len(table)):

mell_im.append(range(count, count + 2*table[x][1]+1))

count = count + 2*table[x][1]+1

weyl = []

for x in range(len(temptempweyl)):

logic = 1

for y in range(len(mell_im)):

count_mell = 0

for z in range(len(mell_im[y])):

count_mell = count_mell + temptempweyl[x][0].count(mell_im[y][z])

count_mell += temptempweyl[x][1].count(mell_im[y][z])

if count_mell == table[y][2]:

logic = logic * 1

else:

logic = logic * 0

if logic == 1:

weyl.append(temptempweyl[x])

logic = 1

weyl_S = []

weyl_S_enc = []

for x in range(len(protoweyl)):

weyl_S_temp = []

weyl_S_enctemp = []

for y in range(len(weyl)):

if protoweyl[x] == len(weyl[y][0]):

weyl_S_temp.append(weyl[y])

weyl_S_enctemp.append([encode(weyl[y][0], mell),
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encode(weyl[y][1], mell)])

if len(weyl_S_temp) != 0:

weyl_S.append(weyl_S_temp)

weyl_S_enc.append(weyl_S_enctemp)

# Step (6)

# Add m_ell values

S = []

Mell_for_S = []

for x in range(len(weyl_S_enc)):

Mell_for_Stemp = []

S.append((len(weyl_S_enc[x][0][0])-len(weyl_S_enc[x][0][1]))/2.0)

for y in range(len(weyl_S_enc[x])):

Mell_for_Stemp.append(mell_add(weyl_S_enc[x][y]))

Mell_for_S.append(Mell_for_Stemp)

# Find the largest mell and produce the LS terms

Terms = []

Mell_terms = Mell_for_S

for x in range(len(Mell_terms)):

Mell_terms_temp = Mell_terms[x]

while Mell_terms_temp != []:

a = Mell_terms_temp.count(max(Mell_terms_temp))

b = max(Mell_terms_temp)

Terms.append([a, b, S[x], parity])

for y in range(2 * b + 1):

tempa = 0

while tempa < a:

Mell_terms_temp.remove(b - y)

tempa = tempa + 1

# Identify the ground state using Hund’s rule

terms = []

for x in range(len(Terms)):

terms.append([Terms[x][0], int(2 * Terms[x][2] + 1),

lsconv[Terms[x][1]], Parlab])

lstext.write(’\n’)

termsymbols = ls_J_termsymbols(Terms, terms)
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return termsymbols

# Function that produces the J labeled termsymbols using the terms

def ls_J_termsymbols(Terms, terms):

termscount = 0

termsymbolsout = []

for x in range(len(terms)):

a = lsrange(Terms[x][1], Terms[x][2])

termsymbols = terms[x]

for y in range(len(a)):

termsymbolsout.append([termsymbols, a[y]])

termscount += termsymbols[0]

return termsymbolsout

’’’

Function that sorts the LS termsymbols using "Hund’s rules",

just the "S maximal" rule, because all other rule are implicite

in the algorthim used producing the terms

’’’

def hunds_rules(lslist):

hundoutput = sorted(lslist, key=lambda S: S[0][1], reverse=True)

return hundoutput

# Flatten one level of nesting

def flatten(ListOfLists):

return itertools.chain.from_iterable(ListOfLists)

# jj terms new for fac (works nearly the same as jjterms())

def jjtermsfac(orbconf):

tempstore = []

comb = []

# Brute force generation of all combinations of spin "ups and downs"
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for x in range(len(orbconf)):

temp = []

temp.append([orbconf[x][0], orbconf[x][1], + 0.5])

temp.append([orbconf[x][0], orbconf[x][1], - 0.5])

comb.append(list(itertools.product(temp, repeat=orbconf[x][2])))

# Generating the cartesian product of all the single electron adjustments

store = list(itertools.product(*comb))

for x in range(len(store)):

store[x] = list(flatten(store[x]))

jjtemp = store

jjtemp.sort()

jjtemp = list(jjtemp for jjtemp,_ in itertools.groupby(jjtemp))

# "Blind" production of all coupling results

jredtemp = []

for x in range(len(jjtemp)):

jredtempap = []

for y in range(len(jjtemp[x])):

jredtempap.append([jjtemp[x][y][0], jjtemp[x][y][1],

abs(jjtemp[x][y][1] + jjtemp[x][y][2])])

jredtemp.append(jredtempap)

jredtempap = []

# Eliminating duplicates

for x in range(len(jredtemp)):

jredtemp[x].sort()

jredtemp.sort()

jredtemp = list(jredtemp for jredtemp,_ in itertools.groupby(jredtemp))

# Splitting the subshell into two jj-subshells (nl- and(!) those with nl+)

a = []

for x in jredtemp:

cache = [[],[]]

temp = x[0]

for y in x:

if y == temp:

cache[0].append(y)
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else:

cache[1].append(y)

a.append(cache)

# Function for the seperate coupling of the nl- and nl+ subshell

def splitpm(L):

# Brute force generation of all possible adjustments of the j_i

cache = []

for x in range(len(L)):

templist = []

for y in range(len(L[x])):

temptemplist = []

a = 0

while a <= 2*L[x][y][2]:

temptemplist.append([L[x][y], L[x][y][2] - a])

a = a + 1

templist.append(temptemplist)

cache.append(templist)

jjtermsout = []

for x in range(len(cache)):

jjtermsout.append(list(itertools.product(*cache[x])))

# Sorting out all sets that do not obtain the Pauli exclusion principle

jjterms = []

for x in range(len(jjtermsout)):

jjterms.append(unique_items(paulifilter(jjtermsout[x])))

jjterms = list(flatten(jjterms))

# Calculate J_tot for ones subshell

jtot = []

for x in range(len(jjterms)):

jt = 0

jtl = []

for y in range(len(jjterms[x])):

jt = jt + jjterms[x][y][1]

jtl.append(jjterms[x][y][0])

jtl.append(jt)

jtot.append(jtl)

jtot.sort(key=lambda x: x[-1])
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# Arrange output and sort

jjtermsout = []

termscount = 0

copy = list(jtot)

while copy != []:

jjtermsout.append(copy[-1])

a = int(2*copy[-1][-1] + 1)

aa = float(copy[-1][-1])

counts = [len(list(subgroup)) for key,

subgroup in itertools.groupby(jtot,lambda x: x)][-1]

termscount += counts

buff = list(copy[-1][:-1])

for x in range(a):

b = 0

buffy = list(buff)

buffy.append(aa - x)

while b < counts:

copy.remove(buffy)

b = b + 1

jjtermsout.sort()

return jjtermsout

’’’

Produce the cartesian products of

the different nl- and nl+ subshells

(empty ones are replaced by a dummy to keep

the latex functions working, because they depend

on the number of estimated maximaly possible jj-subshell)

’’’

output = []

for x in a:

if x[1] == []:

if x[0][0][1] < x[0][0][2]:

temp = list(itertools.product([[[x[0][0][0],

x[0][0][1],0],0]],splitpm([x[0]])))

else:

temp = list(itertools.product(splitpm([x[0]]),

[[[x[0][0][0],x[0][0][1],0],0]]))

output.append(temp)

else:

temp = list(itertools.product(splitpm([x[0]]),

splitpm([x[1]])))
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output.append(temp)

new = list(flatten(output))

return new

# jj terms

def jjterms(orbconf):

tempstore = []

comb = []

# Brute force generation of all combinations of spin "ups and downs"

for x in range(len(orbconf)):

temp = []

temp.append([orbconf[x][0], orbconf[x][1], + 0.5])

temp.append([orbconf[x][0], orbconf[x][1], - 0.5])

comb.append(list(itertools.product(temp, repeat=orbconf[x][2])))

# Generating the cartesian product of all the single electron adjustments

store = list(itertools.product(*comb))

for x in range(len(store)):

store[x] = list(flatten(store[x]))

jjtemp = store

jjtemp.sort()

jjtemp = list(jjtemp for jjtemp,_ in itertools.groupby(jjtemp))

# "Blind" production of all coupling results

jredtemp = []

for x in range(len(jjtemp)):

jredtempap = []

for y in range(len(jjtemp[x])):

jredtempap.append([jjtemp[x][y][0], jjtemp[x][y][1],

abs(jjtemp[x][y][1] + jjtemp[x][y][2])])

jredtemp.append(jredtempap)

jredtempap = []

# Eliminating duplicates
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for x in range(len(jredtemp)):

jredtemp[x].sort()

jredtemp.sort()

jredtemp = list(jredtemp for jredtemp,_ in itertools.groupby(jredtemp))

# Brute force generation of all possible adjustments of the j_i

cache = []

for x in range(len(jredtemp)):

templist = []

for y in range(len(jredtemp[x])):

temptemplist = []

a = 0

while a <= 2*jredtemp[x][y][2]:

temptemplist.append([jredtemp[x][y], jredtemp[x][y][2] - a])

a = a + 1

templist.append(temptemplist)

cache.append(templist)

jjtermsout = []

for x in range(len(cache)):

jjtermsout.append(list(itertools.product(*cache[x])))

# Sorting out all sets that do not obtain the Pauli exclusion principle

jjterms = []

for x in range(len(jjtermsout)):

jjterms.append(unique_items(paulifilter(jjtermsout[x])))

jjterms = list(flatten(jjterms))

jtot = []

for x in range(len(jjterms)):

jt = 0

jtl = []

for y in range(len(jjterms[x])):

jt = jt + jjterms[x][y][1]

jtl.append(jjterms[x][y][0])

jtl.append(jt)

jtot.append(jtl)

jtot.sort(key=lambda x: x[-1])

# Calculate J_tot for ones subshell

jjtermsout = []

termscount = 0
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copy = list(jtot)

while copy != []:

jjtermsout.append(copy[-1])

a = int(2*copy[-1][-1] + 1)

aa = float(copy[-1][-1])

counts = [len(list(subgroup)) for key,

subgroup in itertools.groupby(jtot,lambda x: x)][-1]

termscount += counts

buff = list(copy[-1][:-1])

for x in range(a):

b = 0

buffy = list(buff)

buffy.append(aa - x)

while b < counts:

copy.remove(buffy)

b = b + 1

jjtermsout.sort()

return jjtermsout

# Function for multi-use the LS terms producing function

def multilsf(iorb):

lsout = []

for x in range(len(iorb)):

a = lsterms(iorb[x])

lsout.append(a)

lsout = list(lsout)

return lsout

# Execut the functions

orbconflist = read_orbconf_fac()

print ’\n’

def termsforoneconfig(orbconf):

# A header of each orbital configurations run

print ’____________’, ’\n’

print ’Obtaining term symbols for the configuration: ’, orbconf, ’\n’

# First all terms are produced in LS and jj coupling
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terms = lsterms(orbconf)

lstermsl = hunds_rules(terms)

jjtermsl = jjterms(orbconf)

iorb = imorbconf(orbconf)

multi = multilsf(iorb)

multin = translateLN(multi)

multils = sucmixing(multin)

multilsj = multiJ(multils, halffilled(list(flatten(iorb))))

# Then the results are interpreted and written into the output files

multilsjtex = LShisttexwl(multilsj, iorb)

lsjtex = Translateall(multilsjtex)

iorbtex = Translateorball(iorb)

lsjterms = LStex(lsjtex, iorbtex)

# "Tex" all L-S- and jj-term symbols and the orbital configurations

if facbool == False:

iorbtexjj = Translateorballjj(iorb)

sucjjl = sucjj(list(flatten(iorb)))

sucjjshl = sucjjsh(sucjjl)

jjtermsl = texalljj(sucjjshl, iorbtexjj, facbool)

else:

facsucjjl = sucjjfac(list(flatten(iorb)))

facorb = orbfac(list(flatten(iorb)))

facsucjjshl = []

for x in facsucjjl:

facsucjjshl.extend(sucjjsh(x))

jjtermsl = texalljj(facsucjjshl, facorb, facbool)

# All the term symbols in a tex-ready form grouped together

output = [lsjterms, jjtermsl, lstermsl, iorbtex]

return output

# Rearranging the list for latex()

results = []

orbconflist.reverse()

for x in orbconflist:

results.append(termsforoneconfig(x))

output = [[],[],[],[]]
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for x in results:

output[0].append(x[0])

output[1].append(x[1])

output[2].append(x[2])

output[3].append(x[3])

print ’\n’

results = list(output)

’’’

Executing the latex() function to fill

the .tex and .txt files with results of this script

’’’

latex(*results)
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