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Zusammenfassung

Massereiche Röntgendoppelsterne (HXMB) sind sehr gut geeignet, die starken Sternwin-
de massereicher Sterne zu untersuchen. Auf Grund seiner langen Beobachtungsgeschichte
stellt Cygnus X-1 mit seinem Begleitstern, dem Überriesen HDE 226868, wahrscheinlich
das am gründlichsten studierte dieser Systeme dar. Daher birgt Cyg X-1 den Vorteil, dass
seine Systemparameter sehr gut bekannt sind, und qualifiziert sich dementsprechend als
perfekter Kandidat, um Windeigenschaften zu untersuchen.
Hanke (2011) und Mǐskovičová et al. (2011) weisen nach, dass im Falle eines Abfal-
lens der Strahlungsintensität (Dips) in der Lichtkurve dieses Systems die Kα-Linien von
wasserstoff- und heliumähnlichem Silizium und Schwefel beinahe vollständig aus den zu-
gehörigen Spektren verschwinden. Stattdessen können Absorptionslinien von niedrigeren
Ionisationsgraden dieser Elemente beobachtet werden. Dieses Verhalten sugeriert, dass
die Dips durch Inhomogenitäten in der Dichte des Sternwinds, auch als “Klumpen” be-
zeichnet, verursacht werden, die unsere Sichtlinie zum Schwarzen Loch kreuzen. Die am
häufigsten vertretene Theorie über die Struktur dieser Inhomogenitäten besagt, dass das
Windmaterial sich selbst gegen die Röntgenstrahlung des Schwarzen Lochs abschirmt. Da
die Röntgenstrahlung aber für das Aufheizen und Ionisieren des Windmaterials verant-
wortlich ist, führt die Selbstabschirmung gegen die Strahlung zu einer Schalenstruktur der
Klumpen aus immer kälterem, weniger ionisiertem Material. In diesem Fall wird erwartet,
dass die in den Klumpen enthaltene Materie sich unabhängig von seinem Ionisationsgrad
mit der selben Geschwindingkeit fortbewegt. Folglich wäre das Herleiten und der Vergleich
der Dopplerverschiebungen der Absorptionslinien unterschiedlichen Ladungszustandes ei-
ne Möglichkeit, diese Theorie zu testen.
Bisher wurden die Linienzentren für niedriger Ionisationgrade für die meisten Elemente,
Silizium und Schwefel eingeschloßen, noch nicht im Labor gemessen. Darüber hinaus din
die wenigen existierenden Berechnungen dieser Linien nicht genau genug, um mögliche
Dopplerverschiebungen mit großer Genauigkeit bestimmen zu können. Ein früherer eher
quantitativer Vergleich der Kα-Linien in den Cyg X-1 Spektren mit theoretischen Linien-
positionen legen eine recht große Diskrepanz zwischen den beobachteten und theoretischen
Linien nahe, mit unterschiedlich starken Verschiebungen für unterschiedliche Ionisations-
grade. Da die Qualität der verwendeten Referenzlinien eher fragwürdig ist, bleibt die Frage
bestehen, ob die Verschiebungen real sind oder eher durch das Fehlen von brauchbaren
Atomdaten verursacht werden. Aus diesem Grund werden in dieser Arbeit die Kα-Spektren
von Silizium und Schwefel im Lawrence Livermore National Laboratory zunächst mit einer
Elektronenstrahl-Ionen-Falle (EBIT) als Emissionslinien erzeugt und schließlich mit dem
EBIT Kalorimeter Spektrometer (ECS) aufgenommen. Numerische Simulationen dieser
Spektren werden mit dem Flexible Atomic Code (FAC) berechnet. Durch den Vergleich
der gemessenen Spektren mit diesen theoretischen Linienzentren werden die Linien mit
denjenigen Übergängen identifiziert, die laut der Simulation den stärksten Beitrag zu de-
ren Entstehung leisten.
Die Dopplerverschiebungen der Absorptionslinien werden aus dem Vergleich der Labor-,
berechneten und Cyg X-1 Spektren hergeleitet und sind mit einer Geschwindigkeit des
Absorbermaterials von null konsistent. Da insbesondere die so erhaltenen Geschwindigkei-
ten für die verschiedenen Ionisationsgrade innerhalb der Fehlerbalken gleich sind, liefern
diese Ergebnisse einen Beleg für das Bild der Zwiebelschalenstruktur der Klumpen, was
gleichzeitig andere mögliche Erklärungsmodelle für die Ursache der Dips und die Struktur
des Windes unwahrscheinlicher macht.





Abstract

High mass X-ray binaries (HMXB) are very well suited to probe the strong stellar winds
of massive stars. Due to its long observation history, Cygnus X-1 with its supergiant
companion HDE 226868 is probably the best studied of these systems. Thus Cyg X-1
provides the advantage of quite well known system parameters, which qualifies the system
as a perfect candidate for the investigation of wind properties.

Hanke (2011) and Mǐskovičová et al. (2011) find that during the event of dips in the
intensity of the system’s light curve the hydrogen and helium like Kα lines of silicon and
sulfur almost vanish in the corresponding spectra. Instead the spectra show absorption
lines originating from lower charge states of these elements. This behavior suggests that
the dips are caused by density inhomogeneities, often referred to as “clumps”, in the
stellar wind passing through our line of sight to the black hole. The most favored theory
about the structure of these inhomogeneities proposes self-shielding effects blocking the
X-radiation of the black hole. Since the X-radiation is responsible for the heating and
ionization of the stellar wind, this self-shielding leads to a shell structure of successively
colder and less ionized material in the clumps. In this case the material contained in the
clumps is expected to move with the same speed regardless of the ionization state. Hence,
one way to test this scenario is to derive and compare the Doppler shifts of the absorption
lines of each ionization state.

Laboratory measurements of the line centers have not been carried out so far for the
lower charge states of most elements, including silicon and sulfur, and the few existing
calculations do not provide information accurate enough to constrain a possible Doppler
shift very well. Previous rather quantitative comparisons of the Kα forest in the Cyg X-1
spectra with theoretical line centers imply a large discrepancy between the observed and
theoretical lines with different shifts for different ionization states. Since the quality of the
employed reference line centers is arguable, the question remains whether these differences
are real or whether they are rather caused by the lack of atomic data. Thus, in this thesis
the Kα spectra of silicon and sulfur are produced with the electron beam ion trap (EBIT)
and measured with the EBIT calorimeter spectrometer (ECS) at the Lawrence Livermore
National Laboratory (LLNL). Numerical simulations of these spectra are computed with
the Flexible Atomic Code (FAC). Through comparison of the measured spectra with these
theoretical line centers the lines are identified with the transitions yielding the strongest
contribution to the production of these lines.

By comparison of the laboratory, calculated and Cyg X-1 spectra Doppler shifts of the
absorption lines are derived which are consistent with zero velocity of the absorbing ma-
terial. Since especially the derived velocity is the same for all ionization states within the
errorbars, the results provide evidence for the picture of the onion like structure of the
clumps, making other possible explanations less likely.



Contents

1 Introduction 11

2 High Mass X-Ray Binaries 13

2.1 Stellar Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Roche Lobes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Stellar Winds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Accretion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Spectral States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Cygnus X-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 The System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.2 Absorption Dips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.3 Low Charge States of Si and S . . . . . . . . . . . . . . . . . . . . . 27

3 X-Ray Spectra 29

3.1 The Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Hydrogenic Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Fine Structure Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Further Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Many-electron Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 LS-vs. jj-coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.1 LS-coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.2 jj-coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.3 Transition from LS- to jj-coupling . . . . . . . . . . . . . . . . . . . 39

3.6.4 Matching the Notation . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Selection Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7.1 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7.2 Back to the Selection Rules . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Kα Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Radiative Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9.1 Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9.2 Induced/ Stimulated Emission and Absorption . . . . . . . . . . . . 48

3.9.3 Relation between the Einstein Coefficients . . . . . . . . . . . . . . 49

3.10 Collisional Excitation and Ionization . . . . . . . . . . . . . . . . . . . . . 50

3.10.1 Collisional Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10.2 Collisional Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10.3 Photoionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.11 Line Intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6



Contents 7

3.12 Atomic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.12.1 Calculation of House (1969) . . . . . . . . . . . . . . . . . . . . . . 56

3.12.2 Calculation of Palmeri et al. (2008) . . . . . . . . . . . . . . . . . . 56

3.12.3 Calculations with FAC . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.12.4 FAC vs. Palmeri et al. (2008) . . . . . . . . . . . . . . . . . . . . . 60

3.12.5 Spectra Simulated with FAC . . . . . . . . . . . . . . . . . . . . . . 60

4 Laboratory Measurements 64

4.1 Electron Beam Ion Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 EBIT Calorimeter Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Quality of the Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.1 The He-like Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.2 The Separation of the Lymans . . . . . . . . . . . . . . . . . . . . . 79

4.6 Influence of the Fit Range . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Line Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7.1 Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7.2 Sulfur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 The FAC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Chandra’s View of Cyg X-1 94

5.1 Chandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.1 The Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.2 The Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.3 HETGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.4 The ACIS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1.5 Readout modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 ObsID 3814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1 Lightcurves and Color-Color Diagrams . . . . . . . . . . . . . . . . 102

5.2.2 Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.3 Absorption Lines and Equivalent Widths . . . . . . . . . . . . . . . 105

5.2.4 Comparison to Laboratory Spectra . . . . . . . . . . . . . . . . . . 105

5.3 ObsID 8525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Conclusion and Outlook 116

A Angular Momentum Notation 121

B Rate Equations 122

Bibliography 125

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135





W
e see how we may determine their
forms, their distances, their bulk,
their motions, but we can never know
anything of their chemical or miner-
alogical structure.

Auguste Comte (1935) about stars
in his book Positive Philosophy





Chapter 1

Introduction

It is reasonable to hope that in the not too
distant future we shall be competent to
understand so simple a thing as a star.

Arthur S. Eddington (1926)

Often texts about X-ray astronomy begin their introduction either reaching way back into
the past when mankind started wondering about the stars in the skies or by resorting to the
discovery of X-rays by Wilhelm Conrad Röntgen (1895). For a change, this introduction
shall tell about the close relationship of astronomy and atomic physics.

Observational astrophysics – taking spectra in the optical or ultra-violet (UV) wavelength
range with ground based observatories, examining the Sun’s X-ray spectrum with rocket
flights, launching X-ray telescopes into orbit to observe distant celestial objects, etc. – has
been going hand in hand with experimental and theoretical atomic physics for quite a long
time. Indeed, it has been a very fruitful relationship for both parties. Everything began
with Joseph von Fraunhofer (1814)’s discovery of dark lines (today known as Fraunhofer
lines) in the continuous optical spectrum of the Sun. Kirchhoff (1860b) and Kirchhoff
& Bunsen (1860) later showed that these lines are due to absorption of light by atoms
after they had noticed that several of the lines mapped by Fraunhofer coincide with the
wavelength of emission lines of heated elements (Kirchhoff, 1860a). The realization that
each element has a characteristic set of lines not only led to the discovery of missing
elements in the periodic table – e.g., cesium (Bunsen, 1860) and rubidium (Kirchhoff &
Bunsen, 1861) – but also hinted at the chemical composition of the Sun’s atmosphere.
The discipline of spectroscopy was born.

One of the most important elements that was first only detected in solar spectra and is
therefore named after the Greek sun god is helium. It was discovered independently by
the astronomers Janssen (1869) and Lockyer (1868) during the solar eclipse of 1868. It
took another 27 years until helium was also isolated on Earth by Si William Ramsay et al.
(1895). Further studies of the origin of spectral lines showed that the complexity of the
spectra increases with increasing atomic number Z of the elements. Balmer (1885) laid the
foundation of a systematic description of spectral lines series when he empirically found
a simple scaling law for the line series in hydrogen. This knowledge about the properties
of spectral lines made it possible for Niels Bohr (1913a,b,c) to derive the Bohr model of
the atom and to explain Balmer’s law theoretically (Bohr, 1920). Around the same time,
Zeeman (1897) discovered the effect of a magnetic field on spectral lines. His suggestion of
the possible astrophysical relevance led to Hale (1908a,b)’s detection of the Zeeman effect
in the optical spectra of sunspots, providing a means to directly measure the strength of
their magnetic field.

Another way atomic physics can help out with astrophysical measurements is by providing
accurate rest wavelength of transitions in elements most commonly seen in stellar spectra.

11
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Figure 1.1: Sketch of the Fraunhofer lines in the optical solar spectrum (from

http://en.wikipedia.org/wiki/Fraunhofer_lines).

Doppler (1842) proposed the effect that the wavelengths of radiation emitted by a moving
object are shifted to shorter or longer wavelengths depending on the direction of the motion
relative to the observer. Knowing the exact position of these wavelengths at rest, the speed
of the object can be easily derived via spectroscopy. For instance, the finding that most
nebula have systematically redshifted spectra resulted in the discovery of Hubble’s law in
cosmology (Hubble, 1929).

A last of many available examples for the symbiosis of atomic physics and astronomy
brings us back to the energy region in focus of this work: X-ray spectra. Fritz et al.
(1967) found lines in the solar X-ray spectrum taken during a rocket flight which were of
unusual type. They believed that these lines originated from Kα transitions in few times
ionized material. The tables given by Fritz et al. (1967), ordered by increasing wavelength,
suggest that spectral information about L-shell ions (3-10 electrons left) of elements like
O, Si, Ar and Fe. Since the laboratory measurements and calculations so far had mainly
been carried out for Kα transitions in singly ionized material and some for hydrogen and
helium like ions, atomic physics was triggered to study these lines in all ionization states
in order to be able to sufficiently identify the lines of the solar spectrum (House, 1969).

The scope of this work is a similar one. Hanke (2007) and Mǐskovičová et al. (2011)
found absorption lines of lower ionization states of silicon and sulfur (as opposed to the
more common He- and H-like ones) in the spectra of the high mass X-ray binary Cygnus
X-1. This kind of transitions is not readily available in spectral databases. Therefore,
we measured them in the laboratory and directly applied the results to the spectra of
Cyg X-1.

To gain a little understanding of the origin of the lower ionization states of Si and S in
Cyg X-1, chapter 2 gives an introduction to the physics in high mass X-ray binaries and
stellar winds and tells the history of Cyg X-1, motivating the need for accurate atomic data.
Chapter 3 explains the atomic physics behind our understanding of the structure of the
atom, of ion production and radiative processes. It also provides a quick overview of how
theoretical predictions of the atomic physics parameters are obtained. After a description
of the production and gathering of X-ray spectra with an electron beam ion trap, the
Kα lines of Si and S are identified and compared to theoretical predictions in chapter 4.
Chapter 5 then combines the experimental results with the Chandra spectra of Cyg X-1
to try to confine the properties of the stellar wind in that system. Finally, in chapter
6 the applied methods and the quality of the results are shortly reviewed and prospects
to improve the laboratory data and hence our knowledge of stellar wind properties are
given.



Chapter 2

High Mass X-Ray Binaries

In any field, find the strangest thing
and then explore it.

John Archibald Wheeler

X-ray binaries are among the most luminous X-ray sources in the sky. They come in
two flavors: low mass X-ray binaries (LMXB) and high mass X-ray binaries (HMXB).
Both types of systems contain either a neutron star or a black hole1 as a compact object
accreting material from a companion star. Although the HMXBs and LMXBs differ in
many respects including their optical properties (Lewin et al., 1995), the characteristic
difference between them is the mass of the companion star. As their names already
implicate, while LMXB comprise a low mass late type star, later than type A, or even
a white dwarf, the companion in a HMXB is a very massive O or B type star with an
optical/ultra-violet luminosity that may be even higher than that of the X-ray source. The
X-ray source is powered by mass accretion onto the compact object through the released
gravitational potential energy. The companion in an LMXB does not have a strong stellar
wind sufficient to power the observed X-ray source and therefore in those systems the mass
transfer is dominated by the companion filling its critical gravitational potential lobe, the
Roche lobe (see section 2.2). In contrast, the OB companion in a HMXB has a strong
stellar wind corresponding to a mass loss rate of about 10−10 to 10−6M� yr−1 (Lewin
et al., 1995), which will be captured by a close compact object.

2.1 Stellar Evolution

Before we learn the details of the stellar wind and the accretion and radiation mechanisms
in a HMXB, we begin with a short reminder of stellar evolution. More or less detailed de-
scriptions of stellar evolution can be found in most basic or overview astronomy textbooks,
such as, e.g., Karttunen et al. (1987) and Carroll & Ostlie (2007).

A star spends the largest part of its life in a steady state, continuously radiating away
energy produced through hydrogen burning in its core. As long as the radiation pressure
counteracts the gravitational pressure, the star lives happily in hydrostatic equilibrium.
Once it runs out of fuel in its core, the H-burning continues in a shell around the core.
During this shell burning phase, the star becomes more luminous and blows up to a

1Black hole is a brief, more catchy expression for the phrase gravitationally completely collapsed star
which is hard to say more than once in a row. The expression became popular when John A. Wheeler
spread it after hearing it from someone in the audience during a discussion about these objects at a
conference held at the Goddard Institute for Space Studies in New York in the fall of 1967. The discussion
was actually about compact objects in the center of pulsars which later turned out to be neutron stars
rathern than black holes.

13



14 Chapter 2. High Mass X-Ray Binaries

red giant. Heated by the energy production of the shell burning, the core can reach
temperatures hot enough to ignite helium burning. For more massive stars this procedure
can go on up to the production of iron, a natural limit since nuclear fusion then becomes
endothermic, i.e., requiring energy for the reaction to take place. He burning, however can
become unstable, causing the star to blow away its outer envelope. The ejected material
can then be seen as a planetary nebula, illuminated from the inside by a white dwarf.

At some point all available fuel will be exhausted. Since the nuclear fusion rate grows
stronger with the mass than the actual amount of burning material, massive stars undergo
a faster evolution. With the increasing lack of fuel, the radiation pressure fades away.
Hence, the gravitational pressure takes over and the star shrinks. If the remaining mass
of the star is less than the Chandrasekhar limit of 1.4M� (Chandrasekhar, 1931a,b), the
star collapses to a white dwarf where gravity is counteracted by the degeneration pressure
of the Fermi-gas of electrons (Fermi, 1926).

Stars with an initial mass greater than about 8M� may not loose enough energy during
their life time and end up with a mass above the Chandrasekhar limit (Seeds & Backman,
2011). In this case, the gravitational pressure forces electrons and protons to combine to
neutrons. Only the degenerate Fermi-gas this time of the neutrons is able to withstand
gravity. A neutron star is formed. A large number of escaping neutrinos produced during
the neutronization of the core may contribute to the outer layers of the star being ejected
in a supernova explosion.

The repulsive neutron-neutron interaction and the degeneracy pressure of the neutron gas,
however, is not almighty. If the star has a yet higher remaining mass, this time above the
Oppenheimer-Volkoff limit (Oppenheimer & Volkoff, 1939), gravity dominates all other
forces and the compact object has to collaps further into a black hole. According to
Postnov & Yungelson (2006) stars of a mass between 25 and 60M· do not loose enough
mass and are most likely to meet this fate. Due to the lack of a thorough understanding
of the equation of state of this extremely dense nuclear matter, the Oppenheimer-Volkoff
limit is not know as accurately as the Chandrasekhar limit but it is definitely below 3M�
(Shapiro & Teukolsky, 1983).

For a single star, this would probably be the end of the story. In a binary system, though,
the contained stars can influence each other heavily in their evolution (Iben & Tutukov,
1985). Figure 2.1 gives an overview of how we end up with our HMXB: The more mas-
sive star (called the primary) in the system evolves faster than its companion. When it
leaves the main-sequence, it expands and overfills its Roche lobe, i.e., the equi-potential
surface that separates the region in space where material is gravitationally bound to one
of the stars (see section 2.2), contaminating the atmosphere of the companion with pos-
sibly metallic2 material. The additional mass loss due to the Roche lobe overflow can
significantly change the outcome of the compact object. After the primary concluded its
evolution to a compact object, the secondary is finally the companion with the higher
mass. When the secondary is itself close to its Roche lobe, accretion of its stellar wind
onto the compact object results in powerful X-ray emission.

2.2 Roche Lobes

Édouard Albert Roche (1849, 1850, 1851) is famous for his work in celestial mechanics,
especially for his description of the gravitational potential in a binary system. The effective

2In astrophysics every element other than hydrogen and helium is called a metal.
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Figure 4: Evolutionary scenario for the formation of neutron stars or black holes in close binaries.
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Figure 2.1: The evolution of a compact binary (from Postnov & Yungelson (2006), Fig. 4).

potential energy of test mass in the potential of a star whose rotation is synchronized with
its orbit does not only depend on the gravity of the two bodies with masses M1 and M2

at positions r1 and r2 but also on the centrifugal potential of their angular motion with
velocity ω around the barycenter rBC = (M1r1 + M2r2)/(M1 + M2). Since all terms in
the potential energy are proportional to the test mass m, we can cancel it for convenience
and obtain the effective gravitational potential per unit mass

Φ(r) = − GM1

|r− r1|
− GM2

|r− r2|
− 1

2
[ω × (r− rBC)]2. (2.1)

From Kepler’s third law for the orbital period (Kepler, 1619)

ω2 =

(
2π

P

)2

=
G(M1 +M2)

a3
(2.2)

with a = |r2 − r1| being the binary separation, we know the norm ω of the angular
velocity ω. Therefore, the shape of the effective potential only depends on the mass ratio
q := M2/M1 of the two stars.
Without loss of generality, we are free two choose our coordinate system conveniently.
The easiest choice is to put the primary star into the origin of the coordinate system,
i.e., r1 = 0, the secondary at a position r2 − r1 on the positive x-axis and let the system
rotate with ω = ωez pointing into the positive z-direction. To eliminate all parameters
and constants but the mass ratio, dimensionless coordinates r/a = (x, y, z) are used to
obtain the scaled Roche potential

a

GM1

Φ(r) =
−1√

x2 + y2 + z2
− q√

(x− 1)2 + y2 + z2
− 1 + q

2

[(
x− q

1 + q

)2

+ y2

]
. (2.3)

There are five critical points in this potential where because of the vanishing gradient
∇Φ = 0 there is no effective force on the test mass, i.e., the gravitational forces on m from
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Figure 1.1: Roche potential of Eq. (1.3)
for q=0.1 along the binary axis, together
with its components (gray): potential of M1
(dashed), potential of M2 (dotted), and cen-
trifugal potential (dash-dotted). The dash-
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(red) horizontal lines show the limiting po-
tentials of the L1, L2, and L3 saddle points,
respectively.

As ω is not an independent parameter, but given by Kepler’s third law,3

ω2 =
G(M1+M2)

a3
(1.2)

where a = |~r2 −~r1| is the binary separation, the shape of the Roche potential depends only
on the mass ratio q := M2/M1. Without loss of generality, one can choose the coordinate
system such that~r1 is the origin,~r2−~r1 is on the positive x-axis, and ~ω points in the positive z-
direction. The scaled Roche potential4 then reads in dimensionless coordinates~r/a = (x, y, z):

a

GM1
Φ(~r) =

−1√
x2 + y2 + z2

− q√
(x−1)2 + y2 + z2

− 1+q

2

[(
x− q

1+q

)2

+ y2

]
(1.3)

This potential has five critical points where ~∇Φ = 0, which are called Lagrangian points
L1–L5 (after the Italian mathematician and astronomer Joseph-Louis Lagrange, 1736–1813).
As ∂Φ/∂z = z · f (x, y, z) with f (x, y, z) > 0, all of them are found in the x-y plane. Figure 1.1
shows the Roche potential along the binary (x-) axis, where the three saddle points L1–L3 are
located. Figure 1.2 visualizes Φ(~r) in the x-y and x-z planes for different mass-ratios q=0.1
and 0.567, the latter corresponding to the HDE226868/CygX-1 system. The upper plots show
the triangular Lagrange points L4 and L5 at (x, y) = (1, ±

√
3)/2 to be the global maxima of the

potential.

The Roche lobes are those equipotential surfaces around M1 and M2 which connect at L1.
Inside each Roche lobe, matter (that is corotating with the binary system) is bound to the
corresponding mass. The shape of a synchronized star itself is an equipotential surface of
the Roche potential, which will notably deviate from a sphere if the star fills a significant
fraction of the Roche lobe volume. Table 1.1 lists geometrical parameters of a selection of
such equipotential surfaces and Fig. 1.3 shows projections of a 3-dimensional Roche lobe and
an equipotential surface that encloses 90% of the Roche lobe volume, which is the estimated
filling factor for HDE226868.

The size of the Roche lobe around M1 is often parameterized in terms of the effective radius
rRoche,1 of a sphere with the same volume. (The size of the lobe around M2 is rRoche,2(q) =
rRoche,1(q

−1).) A general approximation, accurate to <1%, was found by Eggleton (1983, eq. 2):

rRoche,1/2(q) ≈
0.49

0.6+ q±2/3 log (1+ q∓1/3)
(1.4)

3 \Sed reŊ eĆ certiĄima exactiĄimaque, quod proportio quae eĆ inter binorum quorumcunque Planetarum tempora periodica, sit praecise
sesquialtera proportioniŊ mediarum diĆantiarum, id eĆ Orbium ipsorum." (Kepler, 1619)

4 The definition of a reduced Roche potential is not unique. Another common choice, ∝ Φ(~r)/ω2, is more
symmetric in the two masses. For shape considerations, however, absolute values do not matter anyway.

Figure 2.2: Roche potential of

Eq. 2.1 for q = 1 along the binary

axis. Its components are shown

in gray: potential of primary mass

M1 (dashed), of secondary mass

M2 (dotted) and centrifugal poten-

tial (dash-dotted). The horizontal

lines indicate the limiting potentials

of the L1 (blue), L2 (green) and

L3 (red) saddle points (from Hanke

(2011), Fig. 1.1).
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Figure 1.2: Roche potential in the x-y plane at z=0 (top) and in the x-z plane at y=0 (bottom) for
q = 0.1 (left) and q = 0.567 (right), respectively. Brighter colors mean higher potentials. The black solid
line shows the Roche lobes – the equipotential surfaces through the L1 point. The black dotted and
dashed lines show the equipotential surfaces through the L2 and L3 points, respectively. The blue (red)
lines show the corresponding equipotential surfaces at 0.5% lower (higher) potential. The triangular
Lagrange points L4 and L5, which are the global maxima of the Roche potential, are indicated by
labeled crosses.
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Figure 1.2: Roche potential in the x-y plane at z=0 (top) and in the x-z plane at y=0 (bottom) for
q = 0.1 (left) and q = 0.567 (right), respectively. Brighter colors mean higher potentials. The black solid
line shows the Roche lobes – the equipotential surfaces through the L1 point. The black dotted and
dashed lines show the equipotential surfaces through the L2 and L3 points, respectively. The blue (red)
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Lagrange points L4 and L5, which are the global maxima of the Roche potential, are indicated by
labeled crosses.

Figure 2.3: Roche potential for q = 0.1 in the x-y-plane at z = 0 (left) and the x-z-plane at

y = 0. Brighter colors stand for higher potentials. The Roche lobes (through L1 are indicated

by a black solid line, equi-potential surfaces through L2 and L3 by the black dotted and dashed

lines, respectively. The red and blue lines trace the equi-potential surfaces of 0.5 % higher and

lower potentials. The local maxima of L4 and L5 are marked with labeled crosses (from Hanke

(2011), Fig. 1.2).

the masses M1 and M2 exactly balance the centrifugal force. As these points constitute
local maxima of Φ, they are unstable equilibrium points (Lagrange, 1772). These points
are called Lagrangian points L1-L5 in honor of Joseph Louis Lagrange who discovered
them in his calculations of the three-body problem. Since ∂Φ/∂z = z · f(x, y, z) with a
positive function f(x, y, z) > 0, all of these saddle points are in the x-y-plane, the plane
of the rotation containing the centers of the stars and their barycenter.

Figure 2.2 (Hanke, 2011) shows the shape of the Roche potential (eq. 2.3) for q = 0.1 along
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the binary axis where the first three Lagrangian points can be found. A corresponding
map of Φ(r) in the x-y plane at z = 0 (viewing into the binary from the top) and from the
side view in the x-z plane at y = 0 is displayed in figure 2.3 (Hanke, 2011). Here, brighter
colors mean higher potential, revealing that the triangular Lagrange points L4 and L5 at
(x, y) = (1,±

√
3)/2 to be the global maxima of the potential.

The equi-potential surface defined by the potential of the inner Lagrangian point L1 where
matter feels the same drag into the directions of both stars is called Roche lobe. Co-
rotating material inside the Roche lobe is gravitational bound to the corresponding star.
Since the effective gravity is in each point perpendicular to the equi-potential surface,
due to the hydrostatic equilibrium of the star the pressure is constant along constant
potentials Φ. Therefore, the shape of the star always coincides with an euqi-potential
surface of the Roche potential. This is also true if the star expands. Because of the shape
of the potential a star in a binary system is only approximately spherical if it is small
compared to its Roche volume. The more the star fills its Roche lope, the more teardrop
shaped it becomes.

2.3 Stellar Winds

The main-sequence with its H-burning is a relatively stable and quite phase in the life of
a star. Nevertheless, its outer layers are very active like in an O or B type star where
the outer layers of the atmosphere are pushed away by radiation pressure. This manifests
itself in strong stellar winds. The main characteristics of stellar wind are the mass loss
rate Ṁ and the terminal velocity v∞. The terminal velocity is the velocity of a particle
that is far enough away from the star that the star does no longer exert forces on it. Since
they depend on the radiative transport in the star and possibly on magnetic fields, stellar
winds are very complex phenomena. There is a variety of theories to describe the stellar
wind of different kinds of stars as they are dominated by different physical processes and,
hence, different approximations are possible to be applied to them. Here we focus on the
line driven winds of early type stars. The textbook of Lamers & Cassinelli (1999) gives a
nice overview of the subject. A somewhat shorter summary can be found in Fürst (2011).
Ions of C, N, O, Si, P, S, and the Fe group elements have numerous resonance lines with
a large optical depth in the UV energy range. Photons of the star’s UV continuum with
matching energies interact with the corresponding ions. During the absorption process the
momentum of the photon is transferred to the absorbing ion. Since the photons are emitted
radially away from the star and the transferred momentum is shared between neighboring
particles (ions and electrons) through Coulomb coupling, there is a net increase of the
atmospheric particles’ momenta away from the star, which results in a steady outflow of
matter, the stellar wind. The wind is especially optically thick for photons at resonance
line energies, i.e., these photons are absorbed away in lower layers of the wind close to
the surface of the star. Although the line opacity is strongly peaked, the Doppler effect
(Doppler, 1842) arranges for a steady supply of absorbable photons. According to the
Doppler effect a photon of frequency ν > ν0 higher than the frequency of a line at ν0 can
still be absorbed by this line if the stellar wind reaches a velocity of

v =
ν − ν0

ν0

· c, (2.4)

where c is the speed of light, as the photon sees this line shifted to its own frequency
ν. Since the star appears to be receding from the ion’s point of view, higher wind speed
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corresponds to a stronger redshift of the radiation it sees, hence, higher photon energies can
be absorbed. This way the stellar wind can become optically thick for the whole spectrum.
In this case the entire momentum of the radiation, L/c, where L is the luminosity of
the star, is transferred to the wind. Then the mass loss rate of the star is maximally
Ṁ . (L/c)/v∞. For a L = 106L� star with v∞ = 3000 km s−1 this estimate gives Ṁmax =
7 · 10−6M� yr−1 which is about the mass loss rate actually observed for OB supergiants
(Cassinelli, 1979). With this mass loss rate the kinetic power of the wind Ṁv2

∞/2 =
v∞
2c
· L ∼ 0.05 % · L is only a small fraction of the stellar luminosity, which hints at

the photons being re-emitted isotropically rather than being destroyed. On average this
emission is not Doppler shifted but adds some flux to the blueshifted absorption lines,
resulting in P Cygni type line profiles (Castor & Lamers, 1979).

The forces acting on the wind at a given velocity depend on the interaction probability
of the photons with plenty of line transitions. Sobolev (1960) calculated the radiative
transfer of momentum in the limit of an infinitely narrow absorption region where the
line width is so small that the absorption coefficient can be approximated by a δ-function.
Another approximation assumes that the wind density is with ρ . 10−12 g cm−3 so low
that collisional excitation is negligible such that only transitions from the ground level, low
excitation and metastable levels contribute (Lamers & Cassinelli, 1999) to the radiative
force. Based on these two assumptions early theories like the one of Lucy & Solomon
(1970) only considered resonance lines, i.e., those involving the ground state. Castor et al.
(1975), however, showed that the radiative force is actually dominated by subordinate
absorption lines which connect different excited states. This Castor Abbott Klein (CAK)
model predicts terminal wind velocities of v∞ ≈ 1500 km s−1 and mass loss rates of Ṁ ≈
10−6M� yr−1, in good agreement with measurements.

The velocity profile of the wind can be described by the velocity law (Puls et al., 2008)

v(r) ' v0 + v∞

(
1− R∗

r

)β
(2.5)

where v0 = v(R∗) is the initial wind velocity at the photosphere of the star with radius
R∗. The value of β depends on the details of the calculation, but with β = 1/2 (Castor
et al., 1975), β ≈ 1 (Friend & Castor, 1983) and β ≈ 0.8 (Pauldrach et al., 1986; Friend &
Abbott, 1986) is in good agreement with the observation of β = 0.68±0.15 by Groenewegen
& Lamers (1989). According to Lucy & Solomon (1970) v0 can be estimated from mass
conservation

ρ(r)v(r) =
Ṁ

4πr
(2.6)

where ρ(r) is the surface density under the assumption of a pure hydrogen envelope with
an electron temperature Te of 70 % of the surface temperature Teff and an electron pressure
of log pe = log g − 0.5.

Line driven winds are intrinsically unstable (Lucy & Solomon, 1970) and therefore small
perturbations grow quickly (Owocki & Rybicki, 1984). Random velocity fluctuations are
self-enhancing: an ion that is a little faster than its environment sees a higher Doppler
shift in the photons and can therefore access less absorbed regions of the UV continuum.
The resulting higher momentum transfer then accelerates this ion even more whereby
again new regions of the radiation continuum become available for absorption. The ion’s
velocity is increased above the local wind speed and clumps are forming. Non-stationary
hydrodynamic simulations show that dense cool shells of gas build on all length scales and
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move through the wind (Dessart, 2004; Dessart & Owocki, 2005) and can especially form
already close to the photosphere (Feldmeier et al., 1997; Dessart & Owocki, 2003).

Simulations by Blondin et al. (1990, 1991) and Mauche et al. (2008) show that in a binary
system even in a smooth wind clumps and density variations would be produced by the
wind passing through the accretion wake of the compact object. The wind structure is
not yet well understood and theorists as well as observers can not say much about the
amount of clumping and the size of the structure – recent reviews are given by Puls et al.
(2008) and Hamann et al. (2008) – but, e.g., for Cyg X-1 Mǐskovičová et al. (2011) and
Hanke (2011) showed that there are probably cold clumps in highly ionized medium.

2.4 Accretion

Although theoretically black holes could evaporate on time scales of (M/M�)3 · 1071 s
through radiation due to quantum effects (Hawking, 1974), for black hole masses in the
order of a few solar masses this process is negligible compared to the lifetime of < 5 ·1071 s
of the universe. Due to their immense gravitational potential, there is no other way for
a black hole to emit radiation directly. Nevertheless, the high X-ray luminosity in the
order of 104 L� has to be produced somehow. Here, the accretion of material donated by
the companion star via stellar winds or Roche lobe overflow comes in handy. Accretion
is indeed able to produce and release lots of energy, mainly in the X-ray regime. A
typical X-ray binary has thus a luminosity of 1036–1038 erg s−1 in the energy range 2–
20 keV (Lewin et al., 1995). For comparison, the bolometric luminosity of the Sun is
L� = 3.839 · 1033 erg s−1.

In the process of accretion the gravitational potential energy of a particle with mass m
falling from a large distance onto the accreting object of mass M with a radius R greater
than the gravitational radius Rg is set free. The gravitational or Schwarzschild radius
(Schwarzschild, 1916)

Rg =
GM

c2
(2.7)

is the radius of the sphere to which the whole mass of an object has to be compressed
for the escape velocity of this object to become equal to the speed of light. With it the
change in potential energy can be written as

∆Egrav =
GMm

R
=

mc2

R/Rg

. (2.8)

For very compact objects with small radius-to-mass ratios R/M and hence small R/Rg,
i.e., with radii close to their Schwarzschild radius, the released gravitational energy is
a large fraction of the accreted particle’s rest mass mc2. The total energy conversion
efficiency η of this process is in the order of 10 percent. The luminosity coming from the
released energy can then be calculated to (Carroll & Ostlie, 2007)

L = ηṁc2. (2.9)

Therefore, a mass accretion rate of ṁ = 1.77 · 10−10M�η−1 yr−1 is required to produce the
observed luminosity L = 1037 erg s−1.

A natural limit for the mass accretion rate is set by the Eddington (1916, 1917, 1925)
luminosity which can be derived from the interaction between the accreted material and
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the emitted radiation (Frank et al., 2002). Accretion is only possible as long as the gravita-
tional force Fg dragging a particle at radius r towards the compact object is stronger than
the radiative force Frad pushing it away. Assuming a mass M spherically symmetrically
accreting fully ionized pure hydrogen gas, the force imbalance

Fg =
GMmp

r2
>
σTS

c
= Frad, (2.10)

where σT is the cross section for Thomson (1903) scattering of photons with free electrons
and S = L/(4πr2) is the energy flux, leads to the Eddington limit

L < Ledd =
4πGMmpc

σT

= 1.3 · 1038 erg

s
· M
M�

. (2.11)

Note that, although the Thomson cross section is negligible for protons, they are neverthe-
less affected by Frad due to their interactions with the electrons through Coulomb (1785)
coupling. The Eddington luminosity is a good estimate but not a hard limit because of
its approximate nature.
For a compact object in a binary system it is easy to find accretable material. Only
the details of the mass transfer mechanisms from the companion to the compact object
depend on the type of the donor star. Therefore, mass transfer can be seen as another
characteristic of the classification of binaries via their companion type.
Since LMXB do not have serious stellar winds, for a LMXB to transfer mass the late type
companion has to fill its Roche lobe such that matter from its atmosphere can spill over
the inner Lagrange point L1 to fall toward the compact object. Since the spilled material
has orbital angular momentum, large accretion discs form. In contrast, the strong stellar
wind of the (O/B) star takes care of the mass transfer in HMXB according to the model
of Bondi & Hoyle (1944) and Bondi (1952). For a supergiant close to filling its Roche
lobe, this wind can be particularly focused towards the compact object (Friend & Castor,
1982). The radial stellar wind, however, usually does not have much angular momentum.
Therefore, HMXB develop only small accretion disks or none at all.
The properties of the accretion differ between black holes and neutron stars. Neutron stars
can have very strong magnetic fields guiding the ionized matter to the magnetic poles of
the star. There the kinetic energy of the accreted matter is deposited in an hot spot on
the solid surface of the neutron star. Both is not the case for black holes.
Because of angular momentum conservation particles with angular momentum with respect
to the accreting object can not just fall straight onto it. Unless the angular momentum can
be deposed of via interactions, the matter has to move on Kepler (1609) orbits. An accre-
tion disk forms of matter slowly spiraling downward onto the compact object. Shakura &
Sunyaev (1973), the standard theory of geometrically thin accretion disks, assumes some
sort of viscosity of unspecified physical origin to transfer the directed kinetic motion due
to the angular momentum into random thermal motion. For a constant accretion rate ṁ
the energy of a steady accretion disk has to be dissipated at a rate

D(r) =
dE

dA dt
=

3GMṁ

4πr3

(
1−

√
r0

r

)
(2.12)

where r0 is the radius where the inner boundary condition of vanishing torque and dissi-
pation is fulfilled. This radius is, for example, equal to the stellar radius R∗ in case of an
accretion disk around a star. The total disk luminosity

∫ ∞

r0

D(r) · 2πr dr =
GMṁ

2r0

(2.13)
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constitutes only half of the accretion power. The other half comes from the kinetic energy
of the accreted particles.
The temperature T (r) of the accretion disk can be estimated under the assumption of
an optically thick disk which hence is in thermodynamic equilibrium. Then the Stefan
(1879)-Boltzmann (1884) law

D(r) = 2σSBT (r)4 (2.14)

applies with an additional factor 2 as both sides of the disk radiate. Solving for T (r),
equation 2.12 becomes

T (r) = 2.7 · 107 K ·
(
ṁ[10−10M� yr−1]

(M/M�)2 · (r/Rg)3

)1/4

·
(

1−
√
r0

r

)1/4

. (2.15)

For typical X-ray binaries the temperature at the inner boundary of the disk, corresponding
to photon energies of E = kBT = 0.086 keV·T/106 K in the soft X-ray regime, thus exceeds
106 K. To calculate the spectrum SE(E) of the full disk from all radii rin < r < rout due
to thermal radiation the Planck (1901) function, the radiation curve of a black body,

B(E, T ) ∝ E3

exp(E/kT)− 1
(2.16)

has to be integrated over the whole area of the disk:

SE(E) =

∫ rout

rin

B (E, T (r)) 2πr dr ≈ 8π

3
r2

in

∫ Tin

Tout

(
Tin

T

)11/3

B(E, T )
dT

Tin

. (2.17)

Here, the integral was simplified through the approximation

T ≈ Tin

(rin

r

)3/4

. (2.18)

The resulting spectrum (Eq. 2.17) in parameters of the inner radius rin and its temperature
Tin is referred to as disk black body or multicolor disk spectrum (Mitsuda et al., 1984;
Makishima et al., 1986). As in this approximation r0 was neglected, rin lacks a “color
correction” factor and hence does not represent the effective inner disk radius (Shimura
& Takahara, 1995).
While an accretion disk can explain the soft thermal component observed in the spectra of
many X-ray binaries, the hard powerlaw component originates from a completely different
physical process: inverse Compton scattering. In inverse Compton scattering low energetic
thermal photons gain energy by scattering off of high-energy electrons. The so called
accretion disk corona of thin hot plasma is sufficient to provide these electrons (Balbus &
Hawley, 1998). As the name already tells us, inverse Compton scattering is the inverse
process of “normal” Compton (1923) scattering where electrons (assumed to be at rest)
gain energy from photons via the process γ + e→ γ′+ e′. After the scattering at an angle
θ the photon energy E reduces due to conservation of the 4-momentum to

E ′ =
E

1 +
E

mec2
(1− cos θ)

. (2.19)

The energy loss averaged over all possible angles θ is then

〈E ′ − E〉 = − E

mec2
(2.20)
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if the photon energy is much smaller than the rest energy of the electron (E � mec
2).

It can be shown (Rybicki & Lightman, 1979) that in the inverse process photons scattering
with Maxwell (1867) distributed electrons with temperature T are up-scattered on average
by

〈E ′ − E〉
E

=
4kBT − E
mec2

. (2.21)

To produce a powerlaw spectrum

dN

dE
∼ EΓ exp (E/E0) (2.22)

multiple scattering (Comptonization) is necessary. This spectrum has an exponential
cutoff at E0 ≈ kBT . The photon index Γ depends on the optical thickness of the electron
plasma.

Markoff et al. (2005) suggest that such a powerlaw spectrum can alternatively be produced
by synchrotron-radiation from jets, which are relativistic plasma outflows. In this case the
base of the jet would provide the thin electron plasma needed for Comptonization.

2.5 Spectral States

We found two mechanisms likely to be responsible for different part of the X-ray spectrum:
the soft thermal and the harder powerlaw component. But we have not come across a
reference point that would indicate their relative contribution to the overall flux in the
spectrum. Actually, repeated observations of the same source show that this relation can
change over time. In black hole binaries there are mainly two spectral states which can be
observed: the high/soft and low/hard state (Lewin et al., 1995). These states are classified
via the relative strength of the soft and the hard spectral component, the total luminosity
and the radio spectrum (Remillard & McClintock, 2006).

In the low/hard state, the X-ray luminosity is typically below 5 percent of the Eddington
luminosity. The spectrum is dominated by the powerlaw component while the soft thermal
component is either very weak or even absent. The powerlaw is rather flat with a photon
index Γ in the range of 1.4 to 1.8. In this state some sources also show considerable radio
emission corresponding to synchrotron radiation from a jet.

During the high/soft state, the luminosity is close to the Eddington limit. While the soft
thermal component dominates the spectrum, a photon index of roughly 2.5 flattens the
hard X-ray flux. There is no radio emission.

A transition between these two states takes place via an intermediate state. The differences
between them can be physically explained with changes in the geometry of the binary
system Brocksopp et al. (Fig. 2.4; 1999). In the soft state the accretion disk reaches very
close to the innermost stable circular orbit (ISCO) resulting in a high accretion rate and
therefore in high luminosity. Since the disk itself is very bright in this state, the soft X-ray
flux is enhanced. The high X-ray flux additionally heats the stellar wind and the surface
of the companion. In contrast, during the hard state the accretion disk is less luminous
and recedes farther from the black hole. Instead a jet and a Comptonizing corona build.
While the Comptonization is crucial for the production of hard X-rays, the weak disk is
responsible for the low soft X-ray flux and does not provide enough food for the black
hole, which leads to an overall decrease of luminosity.
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1Figure 1.12: Sketched geometry for the hard (top) and soft (bottom) state of Cyg X-1.
(from Brocksopp et al., 1999a, Fig. 7)

Figure 1.13: A jet blown ring around Cyg X-1 (cross) next to the H II region Sh2-101 (left).
(observed for 60 h at 1.4 GHz; from Gallo et al., 2005, Fig. 1)

outflow (Markoff et al., 2005), see also Fig. 1.12. This jet, imaged by Stirling et al. (2001), who
measured a velocity of v > 0.6 c, is also considered as the origin of the radio emission, which
is thought to be synchrotron radiation (Fender et al., 2000). It was recently found that the jet
(‘dark outflow’) has to carry a significant power – even comparable to the X-ray luminosity
of Cyg X-1 itself. This was inferred from a ring of radio emission (Fig. 1.13) that might
result from the shock of the jet hitting a nearby H ii region (Gallo et al., 2005). Correlations
between the radio and X-ray spectrum are shown, e.g., by Wilms et al. (2006b, Fig. 8).

1.3.4 Transient X-ray dips

It has already been found in early times of X-ray observations (Li & Clark, 1974; Mason et al.,
1974), that Cyg X-1 shows sudden decreases of its X-ray intensity (“X-ray dips”), whose
duration is usually only minutes, but which can last for up to 8 hours as well. The spectrum
hardens during those dips, i.e., low energies are more strongly reduced than higher ones and the
spectrum becomes flatter. This indicates that they may result from photoabsorption, which
affects a spectrum dominantly at low energies. (The cross section is roughly σph.abs.∼ E−3,
cf. Sect. 2.1.1.) The hardness is often also defined quantitatively as ratio of the fluxes in
different energy bands. Therefore, dips can be identified as peaks in hardness curves – often
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Figure 2.4: Sketched geometry of the hard (top) and soft (bottom) state of the HMXB Cyg X-1

(from Brocksopp et al., 1999, Fig. 7).

2.6 Cygnus X-1

2.6.1 The System

The HMXB in focus of this work is not only the first black hole candidate to be confirmed,
it is also one of the best studied black hole systems with outstanding optical as well as X-
ray data. Cyg X-1 was discovered as a bright X-ray source by Bowyer et al. (1965) during
a rocket flight mission. Due to the simultaneous state transition of Cyg X-1 (Tananbaum
et al., 1972) and the source of a radio flare around the same sky coordinates (Hjellming
et al., 1971; Hjellming & Wade, 1971), it was possible to determine the position as accurate
as 5′′ and identify the X-ray source with its optical companion HDE 226868 (Murdin &
Webster, 1971; Webster & Murdin, 1972; Bolton, 1972). This optical companion is a
mV = 8.84mag bright O9.7Iab type supergiant (Walborn, 1973; Humphreys, 1978; Herrero
et al., 1995). Radial velocity measurements of HDE 226868 confirm its binary nature and
constrain its orbital period to about 5.6 days (Bolton, 1975; Guinan et al., 1979; Gies &
Bolton, 1982; Sowers et al., 1998). The value of Porb = 5.99829(16) d given by Brocksopp
et al. (1999) is the one that is commonly used for recent calculations of the ephemerides,
which define the epoch of phase φ = 0, i.e., the superior conjunction of the black hole.

The system is located near ηCyg at right ascension α = 19h58m21.67s and declination
δ = 35◦12′5.23′′ (Reid et al., 2011) or galactic coordinates lII = 71.3◦, bII = +3.1◦, i.e.,
close to the galactic plane (Liu et al., 2006). Earlier measurements, e.g., Bolton (1972) and
Ninkov et al. (1987), put the system at a distance of about 2.5 kpc (1 kpc = 3.085 ·1019 m).
The two most recent measurements, however, agree on a distance of roughly 1.8 kpc. One
determines the distance from the dust scattering halo of the source to be 1.81± 0.09 kpc
(Xiang et al., 2011). The other one is using the VLBA to determine the trigonometric
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parallax obtaining a distance of 1.86+0.12
−0.11 kpc (Reid et al., 2011). This method is even so

sensitive to the orbital period of the binary that Reid et al. (2011) could determine the
orbit to be clockwise on the sky.
HDE 226868 has an effective surface temperature of Teff = 32000 K, a luminosity of L∗ =
105.4 L� ≈ 1039 erg s−1 and a stellar radius of R∗ = 17R� (Herrero et al., 1995). Its
mass loss rate is quoted as Ṁ∗ = 3 · 10−6M� yr−1 due to a stellar wind with a terminal
velocity of v∞ = 2100 km s−1 (Herrero et al., 1995). The star has a long history of masses
assigned to it. Hutchings (1978) deduced the orbital elements from the lightcurve and
came up with a mass of 14 to 19 solar masses (M�). Gies & Bolton (1986) investigated the
rotational broadening of absorption lines and infered a due to the unconventional method
probably too high mass of 33± 9M�. Herrero et al. (1995) employed unified models and
derived a bunch of parameters, among them a companion mass of about 15M� under the
assumption of a synchronous rotation and an inclination of the system of 35◦. Another
non-standard method by Zió lkowski (2005) using the evolutionary status of the star also
led to a somewhat too high mass prediction of 40 ± 5M�. The most recent estimate for
the mass of the companion star, namely 19.16 ± 1.90M�, by Orosz et al. (2011) based
on an eccentric orbit and non-synchronous rotation claims to be more direct and robust
than the previous measurements, owing to their use of the new high precision distance
measurement of Reid et al. (2011).
A similar odyssey is the search for the inclination i of the system, i.e., the angle between
its orbital plane and our line of sight. Several approaches have been undertaken to find a
value for this parameter but none of them is constrained very well. The change of the Civ
UV line between the conjunction phases leads to i = 36◦−67◦ (Davis & Hartmann, 1983),
the above mentioned investigation of the rotational line broadening yields i = 28◦ − 38◦

(Gies & Bolton, 1986). The polarization of the R, G, B flux hints at i = 25◦ − 67◦ Dolan
& Tapia (1989) while the orbital modulation of the X-ray flux suggests i = 10◦−40◦ (Wen
et al., 1999). Gies et al. (2003) derive i = 23◦ − 37◦ from the velocity components of the
Hα P Cygni line profile. The radial velocity curve of a Roche model covers i = 31◦ − 44◦

(Abubekerov et al., 2004). Therefore, usually an inclination of i = 35◦ is assumed for the
Cyg X-1 system as this value is more or less the intersection of all these intervals. The
recent radio measurements by Orosz et al. (2011), however, imply a more precise value of
i = 27.1± 0.8◦ for the inclination.
Knowledge of the systems inclination is crucial for the determination of some of the systems
parameters. Since the inclination is hard to measure and obvisouly not very well known,
these parameters are often just cited in dependence of the inclination, i.e., their values
measured in the projection of the orbit to the plane perpendicular to our line of sight. For
example, the projected radius of HDE 226868’s orbit

a∗ sin i =
K∗Porb

2π
= 5.82(5) · 109 m = 8.36(8)R� (2.23)

can be infered from the radial velocity semi-amplitude of HDE 226868 (Gies et al., 2003)

K∗ = v∗ sin i =
2πa∗ sin i

Porb

= 75.6(7) km s−1. (2.24)

These values are also in good agreement with the results of LaSala et al. (1998) and
Brocksopp et al. (1999) but larger than Gies et al. (2008) which again agree very well with
Bolton (1975) and Sowers et al. (1998). According to Canalizo et al. (1995) this large
systematic uncertainty – larger than the quoted error bars – could be explained by the
fact that different photospheric absorption lines can differ in their radial velocity.
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Applying Kepler (1619)’s third law

P 2
orb

a3
=

4π2

G(M∗ +MX)
, (2.25)

where a = a∗ + aX is the binary separation and MX the mass of the black hole can-
didate, and using the center-of-mass definition a∗M∗ = aXMX to rewrite the velocity
semi-amplitude (Eq. 2.24 in terms of the binary separation

K∗ =
MX

M∗ +MX

2πa sin i

Porb

(2.26)

we obtain the spectroscopic mass-function (Karttunen et al., 1987)

f(M) :=
PorbK

3
∗

2πG
=

(MX sin i)3

(MX +M∗)2
=

MX sin3 i

(1 + q−1)2
(2.27)

where q = MX/M∗ is again the mass ratio of the two components. If inclination and
mass of the companion are known, the mass of the compact object can be calculated
from this mass-function. For all derived values of the companion mass the mass of the
compact object lies well above the Oppenheimer-Volkoff limit of 3M�. The most recent
and possibly most accurate available value for the black hole mass is MX = 14.8± 1.0M�
from Orosz et al. (2011). Cyg X-1 is therefore a very convincing black hole candidate.
The system spends most of its time in the hard state and only goes to the soft state in
about 30 % of the time (Wilms et al., 2006b). In the hard state, which was first identified
by Tananbaum et al. (1972), the powerlaw has a spectral index of Γ ≈ 1.7 above 2 keV
and a cutoff at E0 = 150 keV (Wilms et al., 2006a). A spectrally flat radio emission of
∼ 12 mJy at 15 GHz indicates the presence of a jet (Wilms et al., 2006b). In the soft state
the powerlaw is with Γ ≈ 2.5 (Zhang et al., 1997) much steeper than in the hard state
and there is no cutoff up to 10 MeV (McConnell et al., 2002). There is evidence for a
fluorescence iron Kα line at 6.4 keV which hardly contributes to the hard state (Ebisawa
et al., 1996). The fluorescence iron line originates from the reflection of X-rays from the
accretion disk where they ionize the accreted material.

2.6.2 Absorption Dips

Since HDE 226868 almost fills its Roche lobe, its stellar wind is highly focused toward the
black hole, which influences the wind with its high gravitational potential. Friend & Castor
(1982) have calculated the distribution of the mass loss of HDE 226868 depending on the
angle of the wind with respect to the binary axis. They found that the mass loss rate in
the direction of the black hole is about 4.5 times as high as the minimal value (Fig. 2.5).
The accretion of that material results in an X-ray luminosity of LX = 1.0 · 104 L�.
In the stellar wind section (sec. 2.3) we learned that the wind is highly structured due
to density discontinuities which can form clumps. We expect light passing through this
denser material to suffer from higher absorption. Consequently, if such a clump would
pass our line of sight to the black hole – or, depending on the speed of the structure, if our
line of sight would pass such a clump –, the observed intensity should decrease. Indeed, Li
& Clark (1974) and Mason et al. (1974) encountered such a short time (usually a couple
of minutes up to 8 hours in duration) decrease in X-ray intensity, so-called X-ray dips,
already in early times of X-ray observation.
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which constrains the mass MX =: M�/q of the compact object well above the Oppenheimer-
Volkoff-limit for neutron stars, see Fig. 1.9. Cyg X-1 has therefore been the first convincing
black hole. The estimated inclination i ≈ 35◦ (Gies & Bolton, 1986) gives MX ≈ 10 M⊙,
if M� ≈ 18M⊙ is assumed (Herrero et al., 1995). (The earlier assumption of M� = (33±9)M⊙
lead even to MX ≈ (16 ± 5) M⊙.)

1.3.2 Accretion

As noted in Table 1.1, HDE 226868 drives a strong stellar wind (mainly by the UV-photons’ radi-
ation pressure) with a terminal velocity of 2 100 km s−1 and a mass loss rate of 3×10−6 M⊙ a−1

(Herrero et al., 1995). 0.1. . . 1% of this material is focused onto the black hole, which strongly
influences the wind by its gravity and non-inertial forces, such that the focused wind is highly
asymmetric. More precisely, Friend & Castor (1982) have calculated that the supergiant’s
mass loss rate in direction of the black hole is about 4.5 times the minimal value, see Fig. 1.10.
(The wind is so extremely focused because HDE 226868 is almost filling its Roche lobe.) This
is also in agreement with the fact that dips (Sect. 1.3.4) occur preferentially near superior
conjunction (i.e., when the back hole is ‘behind’ HDE 226868 along our line of sight).

This accretion gives a luminosity of typically LX ≈ 4×1030 W = 1.0×104 L⊙. The fact that
Cyg X-1 is continuously powered by wind accretion makes it a persistent X-ray source. In
transient low mass X-ray binaries, which are fed by a disk formed of Roche lobe overflowing
matter, the effective accretion rate depends on the viscosity in the disk. If enough material is
available, the viscosity increases and so much energy will be dissipated that an X-ray outburst
can be detected. But the black hole quickly absorbs the whole disk and the source falls into
quiescence – until enough matter is collected again.

There is also evidence for a small accretion disk: Some (especially soft state) spectra show
a soft excess at low energies, which can be explained by blackbody radiation from a standard
accretion disk, and even most hard-state spectra contain the Fe Kα line at 6.4 keV, which is
thought to be the fluorescence in the disk from reflected X-rays.

As HDE 226868 is very close to filling its Roche lobe, there might be further matter trans-
fers onto the black hole, induced by tidal effects of the black hole (Blondin et al., 1991):
Already Petterson (1978) has showed that material leaves the companion star of many
HMXB systems via the inner critical point (which only coincides with the Lagrange point L1,
if the star is co-rotating). The trajectory of this stream, as well as the final accretion rate on
the compact object, depends on the rotation of the companion and the binary separation, as
the stream is deflected by the Coriolis force.

Petterson (1978) suggested that Cyg X-1, in the hard state, accretes only the stellar wind,
whereas the stream might contribute in the high state. Nevertheless, the trailing stream can
account for the enhanced absorption, as well as an increased number of dips, which is detected
at orbital phases φ ≈ 0.6, even if this stream passes the black hole.

Figure 1.10: Mass loss rate of Cyg X-1,
modeled by Friend & Castor (1982, Fig. 4).

The mass loss along the axis of the
binary is higher by a factor of ≈ 4.5.
Therefore, this kind of mass transfer is
called the “focussed wind scenario”.
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Figure 2.5: The mass loss rate of Cyg X-1

(from Friend & Castor, 1982, Fig. 4). The

mass loss rate along the binary axis is about

a factor 4.5 higher than the minimal value,

leading to the picture of the focused wind.

Observations of the properties of these dips give evidence for our scenario and hence for
the dips actually being caused by enhanced absorption through clumps. During the dips
the spectrum hardens and becomes flatter, i.e., the flux of low energy photons is more
strongly reduced than the flux of hard X-ray photons. If the reason for the flux reduction
is photoabsorption, this behavior is plausible as the photoabsorption cross section is pro-
portional to E−3. The hardness of a spectrum can be determined quantitatively by the
ratio of the flux of the hard to the soft energy band. A hardening of the spectrum would
then be visible as a peak in the hardness curve, or as a valley in the softness curve (inverse
ratio). Ba lucińska-Church et al. (1997) found that a root mean square variability ampli-
tude apparent in Cyg X-1 is proportional to the X-ray intensity and that this flickering is
reduced during dips. Therefore, they conclude that the flickering has to be intrinsic to the
emission region of the source and the dips have to be caused by absorption. Furthermore,
Pravdo et al. (1980) has shown that the UV-spectrum, which is dominated by the emission
of the O-star, remains unchanged during the dips. This stability of the UV-flux indicates
that the absorption dips are likely caused by clumps in the accretion flow. This conclusion
is supported by the fact that dips are mainly observed during superior conjunction of the
black hole, i.e., when our line of sight passes at φ = 0 above the companion through the
focused wind region to the emission region around the black hole. Ba lucińska-Church et al.
(2000) used RXTE observations to conduct a systematic study of the distribution of the
dips over orbital phase. The result can be seen in Fig. 2.6. At φ ≈ 0.95 there is a strong
peak of dip occurrence with a FWHM of 0.25. Another much smaller peak at φ ≈ 0.6 can
probably be explained with the presence of a tidal stream trailing the black hole. This
stream probably is produced by Roche lobe overflow of material of HDE 226868.

A characteristic property of the dense blobs in the focused wind is proposed by Ba lucińska-
Church et al. (2000): neutral material in the focused wind is highly ionized by the X-rays
emitted by the accretion process. If due to the density variations discussed earlier clumps
form, due to their high density (100 to 1000 times denser than the surrounding material)
they shield themselves from the photoionization.

Hanke (2011) and Mǐskovičová et al. (2011) investigated several Chandra observations of
Cyg X-1 in the hard state. Figure 2.7 shows the lightcurves of ObsIDs 3815 (φ ≈ 0.75),
3814 (φ ≈ 0), 8525 (φ ≈ 0.05), 9847 (φ ≈ 0.2) and 11044 (φ ≈ 0.5), thus covering the
different orbital phases very well. Since the hardening of a spectrum is defined via the flux
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even better than in the light curves themselves. Ba�lucińska-Church et al. (1997) found that
the flickering of the source is also reduced during the dips, in detail that the root mean square
(rms) variability amplitude9 is proportional to the X-ray intensity. According to them, this
shows on the one hand that the variability is intrinsic to the emission region of the source, and
it suggests on the other hand that dips are phenomena of absorption. Pravdo et al. (1980),
however, have already noticed that the dips cannot be explained solely by photoabsorption.
(But Remillard & Canizares (1984) state again, that the data of Pravdo et al. cannot rule out
absorption in partially ionized material.)

The investigation of the dips by timing observations helps thus to constrain the geometry
of the source region. As the UV spectrum of Cyg X-1, which is dominated by the O star
HDE 226868, remains unchanged during the dips (Pravdo et al., 1980), it is likely that the
dips arise from clumps in the accretion flow.
It was already known in the 1970s that dips
occur mainly near superior conjunction φ = 0,
which was confirmed by the systematic analy-
sis of their distribution with orbital phase by
Ba�lucińska-Church et al. (2000). The distribu-
tion of dips in archived historical observations
shows a clear peak at phases near φ = 0.95,
i.e., short before upper conjunction, with a
full width at half maximum of 0.25. They
show that the distribution follows the varia-
tion of the column density in the wind. The
analysis of RXTE/ASM (see Sect. 1.1.3) data
(where dips are identified via hardness ra-
tios of the count rates in the different energy
bands) reverifies this result with a greatly im-
proved statistic and reveals another peak at
φ ≈ 0.6, see Fig. 1.14.
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Figure 1.14: Phase distribution of dips.
(Ba�lucińska-Church et al., 2000, Fig. 5)

Several scenarios for the origin of these dips have been proposed (see, for example, Remillard
& Canizares, 1984; Ba�lucińska-Church et al., 2000). It is quite likely that the dips arise from
clumps in the accretion flow. The focused stellar wind is highly ionized by the X-rays, which
also suppresses the radiative driving force from HDE 226868. Ba�lucińska-Church et al. (2000)
suggested that neutral material in the wind leads to the formation and – by shielding of
X-rays – growth of dense blobs, whose density is enhanced by a factor of 100. . . 1000. The
occurrence of dips near φ = 0.6 may indicate that there is also a stream produced by Roche
lobe overflow which trails the black hole.

Feng & Cui (2002) have reported a new category of dips: What has been presented so far,
holds only for ‘type A’ dips – according to their nomenclature. They found also (a minority
of) ‘type B’ dips, where the flux is reduced almost independent of the energy. The following
possibilities, which both agree with the fact that B-dips occur independent of orbital phase,
are among their discussed explanations: 1. Parts of the extended emission region are suddenly
fully obscured by a tidal stream close to the accretion disk itself. 2. The new dips could also
result from Thomson scattering in extremely dense, but ionized blobs in the accretion flow,
which are again very close to the X-ray source.

1.4 The Chandra X-ray observatory

As described in the very first Section 1.1, all these X-ray features of black holes in X-ray binary
systems, and in particular of Cygnus X-1, discussed in the last sections can only be observed
with space telescopes. The active satellite missions have been mentioned briefly in Sect. 1.1.3.
In this section, the Chandra X-ray observatory, which performed the observation analyzed

9
This variability of Cyg X-1 is subject of many extensive studies, e.g., of Gleissner (2004), as it gives hints

on the timescales and sizes of the system, but it is not a main issue of this work.
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Figure 2.6: Distribution of the dips with

orbital phase (from Ba lucińska-Church et al.,

2000, Fig. 5). Most of the dips are seen

around φ ≈ 0 where our line of sight crosses

the focused wind. The smaller peak at

φ ≈ 0.6 probably comes from a tidal stream.
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Figure 2.7: Lightcurves (top) and softness ratio (bottom) of Chandra observations of Cyg X-1

in the hard state. The strongest absorption dips occur around orbital phase φ ≈ 0◦. There is no

dipping at all at φ ≈ 0.5◦(from Mǐskovičová et al., 2010).

ratio of the soft and the hard band, the lower panel also displays the softness ratio (0.5–
3 keV)/(3–10 keV). While each observation is displayed in different colors, the different
shades of the same colors indicate the division of each lightcurve into different dipping
states. In agreement with Ba lucińska-Church et al. (2000) the strongest dipping is found
around phase φ ≈ 0 while the observation at φ ≈ 0.5 shows no dipping at all.

2.6.3 Low Charge States of Si and S

Hanke (2011) and Mǐskovičová et al. (2011) extracted spectra of these Chandra observa-
tions according to the different dipping stages indicated in Figure 2.7. Their aim was to
analyze how the spectra change with enhanced absorption in order to find some clues about
the structure and composition of the stellar wind in this system. Indeed, they found some
very interesting features: while the non-dip spectrum mainly exhibits absorption lines of
hydrogen and helium like ions, with increasing stages of dipping those lines almost vanish
for silicon and sulfur. Instead the charge balance of Si and S shifts towards mildly ionized
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material and absorption lines of lower charge states start to show up (Fig.2.8).

The presence of transitions of low charge states in the wind material is per se already
strong evidence for the presence of colder and hence probably denser material. Measuring
the Doppler shift of the lines may beyond that even help to make a statement about the
structure of the clumps. The only problem there is that to calculate the Doppler shift of a
line the rest wavelength of this line has to be known. Unfortunately, experimental values
and even theoretical calculations of the wavelength of the Kα spectrum of low charge
states are only to be found very sparsely in atomic databases – if at all.

Above the spectra in Fig. 2.8 the wavelengths of the Si Kα lines calculated by House (1969)
are indicated. It is not hard to see that these theoretical lines do not agree very well with
the lines as observed in Cyg X-1 and have quite different shifts for different ionization
states. In this case each ionization state would build small clumps of its own which would
trail behind each other through our line of sight. Then an explanation for the presence of
low charge states would be needed. An opposing theory is that the clumps are heated and
hence highly ionized from the outside by the X-ray radiation of the accretion process while
the material shields itself such that the inner regions of the clump consecutively see less
radiation and consequently are cooler and less ionized. In this picture the clumps would
have an onion-like structure and be rather stationary.

As discussed in section 3.12.1, the calculations of House (1969) are not very accurate.
Therefore, the question remains whether the lines in Cyg X-1 are really strongly shifted or
rather we are lacking good atomic physics data. The simplest way to answer this question
is to go to the laboratory and measure these spectra under clean and controlled conditions.
But first we will have a crash course in atomic physics.
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X-Ray Spectra

Eine gute Theorie ist das
Praktischste, was es gibt.

Gustav Robert Kirchhoff

The simplest example to explain the physics and the composition of the atomic structure is
usually the hydrogen atom. Although the photons emitted by transitions in the hydrogen
atom do not belong to the X-ray spectrum but rather to the ultraviolet (UV) regime,
hydrogen still makes for a good starting point. At the end of the derivation we will see
that the transitions in focus of this work follow the same principles as the ones in the
hydrogen atom and hence can easily be led back to it. Because of its fundamental role,
basically every book about atomic physics and spectra treats the hydrogen problem. The
following derivations mainly follow the books of Friedrich (1990) and Cowan (1981).

3.1 The Hydrogen Atom

The time-dependent Schrödinger equation

Ĥ|ψ(t)〉 = i~
d|ψ〉
dt

(3.1)

describes the evolutioin of a state |ψ〉 with the time evolution of its corresponding physical
system being determined by the Hamiltonian1 Ĥ, an Hermitian operator describing the
energy of said system. The Hamiltonian usually can be expressed by the sum of the kinetic
energy

∑N
i=1 p̂2/2mi of all components of the system and a potential energy V̂ (r̂1, . . . , r̂N).

In coordinate representation the (Schrödinger, 1926b,a) equation is a simple partial dif-
ferential equation of the form

Ĥψ(r, t) = ı~
∂ψ

∂t
. (3.2)

If |ψE〉 is an eigenstate of Ĥ with eigenvalue E, i.e.,

Ĥ|ψE〉 = E|ψE〉 (3.3)

which is known as the time-independent or stationary Schrödinger equation, and if the
Hamiltonian has no explicit time dependency, then the wavefunction

|ψ(t)〉 = exp
(
− ı
~
Et
)
|ψE〉 (3.4)

1named after its inventor William Rowan Hamilton (1933) for revolutionizing classical mechanics with
his principle of varying action.
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is a solution of the Schrödinger equation. The eigenvalue with the smallest energy cor-
responds to the ground state of the system. Any linear combination of solutions of the
time-dependent Schrödinger equation is again a solution. Consequently, the eigenstates
|ψE〉 of Ĥ can be used to set up a general solution:

|ψ(t)〉 =
∑

n

cn exp
(
− ı
~
Et
)
|ψE〉. (3.5)

In order to solve the time-dependent Schrödinger equation in case of a time-independent
Hamiltonian, it is therefore sufficient to find all eigenvalues of Ĥ. This information can
be applied to the hydrogen atom.
The hydrogen atom in its most abundant form consist of a proton and an electron (Thom-
son, 1906). In non-relativistic quantum mechanics the Hamilton operator of their interac-
tion can be expressed as

Ĥ =
p̂2

p

2mp

+
p̂2

e

2me

− e2

|re − rp|
(3.6)

where the first two terms represent the kinetic energy through the momentum pp,e of the
proton and electron, respectively, and the last term stands for the Coulomb interaction
between these two elementary charges at positions re or rp (Friedrich, 1990). This two-body
Hamiltonian can be re-written in terms of the center-of-mass coordinate R = mprp+mere

mp+me

and the relative distance r = re − rp between the proton and electron. In this coordinate
system

P̂ = p̂p + p̂e =
~
ı
∇R (3.7)

denotes the total momentum while

p̂

µ
=

p̂e

me

− p̂p

mp

=
~
ı
∇r (3.8)

stands for the momentum of the relative motion. µ = memp

me+mp
is the reduced mass. Since

the proton is about 1840 times heavier than the electron, µ ≈ me. The Hamiltonian then
looks like

Ĥ =
P̂

2(mp +me)
+

p̂

2µ
− e2

r
. (3.9)

The first term describes the free motion of the center of mass. The solution for this part of
the problem is known to be a plane wave (Friedrich, 1990) but is of lesser interest for the
structure of the energy levels. The second part is the internal Hamiltonian of an electron
moving in the central Coulomb potential of the proton. Therefore, the two-body problem
is reduced to solving the Schrödinger equation of the one-body problem of the internal
Hamiltonian.
Due to the radial symmetry of the problem, it makes sense to express the internal Hamil-
tonian in terms of the Laplace operator ∆̂ = ∇2 in spherical coordinates. With the help
of the orbital angular momentum operator

l̂ = r× p̂ = −ı~r×∇ (3.10)

the Laplace operator can even be expressed in terms of a more physical variable than just
the angles θ and φ. Making this change the new expression for the Hamiltonian is (Cowan,
1981)

Ĥ =
p̂

2µ
− e2

r
= − ~

2µ
∆̂− e2

r
= − ~

2µ

1

r
∂2
rr +

l̂2

2µr2
− e2

r
. (3.11)
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Since the angular momentum commutes with the Hamiltonian, i.e., [Ĥ, l̂] = 0, the wave-
function can be separated into a radial and an angular component

ψ(r, θ, φ) = R(r)Ylm(θ, φ) (3.12)

where Ylm are spherical harmonics2. l and m are integers and correspond to the eigenvalues
of the quadratic orbital angular momentum operator l̂2|ψ〉 = ~2l(l + 1)|ψ〉 and its third
vector component

lz|ψ〉 = ~m|ψ〉. (3.13)

For this reason only the radial component of the wavefunction contributes to the derivatives
in the Hamiltonian and the Schrödinger equation to be solved reads

(
1

r
∂2
rr −

l(l + 1)

r2
+

2

a0r
− 2Ẽ

)
R(r) = 0. (3.14)

Here, a0 = ~2

µe2
≈ a0 = 0.53 Å denotes the Bohr radius, which is defined as the most

probable distance between the proton and the electron in a hydrogen atom in its ground
state, and Ẽ = µ

~2E with E < 0 is the rescaled energy eigenvalue. To get an idea of the
solution of this equation we first take a look at the asymptotic solutions of the problem
at the origin and infinitely large distances:

r →∞
(
∂2
r + 2Ẽ

)
R = 0 =⇒ R ∝ e−γr γ =

√
2|Ẽ| (& e+γr)(3.15)

r → 0

(
1

r
∂2
rr −

l(l + 1)

r2

)
R = 0 =⇒ R ∝ rl (& r−(l+1)). (3.16)

In the limit r → ∞ the positive solution e+γr is discarded as otherwise the probability
to find the electron at infinitely large distances would grow exponentially, which is not
the case for a bound particle. For the r → 0 limit, the r−(l+1) solution is neglected as
it would lead to divergences. Now that the asymptotic behavior is known and secured
to be convergent, we can assume that the remaining part of the radial wavefunction can
be described by a polynomial. This assumption can be made as the polynomials form a
complete base and hence every function can be expressed through them. Inserting the
ansatz

R(r) = F (r)rle−γr (3.17)

with the general form of a polynomial F (r) =
∑
cνr

ν into the Schrödinger equation 3.14
leads to

rF ′′ + 2(l + 1− γr)F ′ +
(

2

a0

− 2γ(l + 1)

)
F = 0. (3.18)

Comparison of the coefficients for rν provides us with a recursion relation for the coefficients
of the polynomial

cν+1 = −2
1
a0
− γ(l + 1 + ν)

(ν + 1)(ν + 2l + 2)
cν with c0 6= 0. (3.19)

2Spherical harmonics are the product of the phase exp (ımφ) and the associated Legendre polynomials

Pl,m(cos θ) with the normalization (−1)m
√

(2l+1)
4π

(l−m)!
(l+m)! . Associated Legendre polynomials are defined

as Pl,m(x) = (1− x2)m/2 dm

dxmPl(x) where the Legendre (1785) polynomial Pl(x) = 1
2ll!

dl

dxl (x2 − 1)l is the

solution of Legendre’s differential equation d
dx

[
(1− x2) d

dxPn(x)
]

+ n(n+ 1)Pn(x) = 0.
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If the polynomial is allowed to grow for ever, at large ν the recursion simplifies to cν+1 =
2γ
ν+1

cν ≈ (2γ)ν+1

(ν+1)!
, which converts the polynomial into an exponential function

F ≈
∑ (2γr)ν

ν!
= e2γr. (3.20)

Again, we cannot let the probability to find the electron at large distances grow expo-
nentially to infinity. Therefore, the recursion has to break at a certain point ν = N , i.e.

cN+1
!

= 0, which translates to the condition
√

2|Ẽ|(l + 1 +N) =
1

a0

=⇒ Ẽ = − 1

2a2
0(l +N + 1)2

. (3.21)

Apparently the energy of the single levels of the hydrogen atom only depends on one
parameter n = l+N+1, the principal quantum number denoting the shell of the electron.
Revoking the rescaling of the energy finally leads to the energy spectrum of the hydrogen
atom:

En = − ~2

2µa2
0

1

n2
= −Ry

n2
, n = 1, 2, 3, . . . , l = 0, 1, 2, · · · , n− 1 (3.22)

with the Rydberg constant Ry = ~2

2µa20
, which was first found experimentally by the Swedish

physicist Johannes Rydberg (1889, 1890) and later derived analytically from quantum
mechanics by Niels Bohr (1920). Unknown to Rydberg, five years earlier Johann Balmer
(1885) had derived a similar but less general formula to find the Rydberg constant.

3.2 Hydrogenic Ions

It is found that the same set of lines shows up in plasmas of elements with higher nuclear
charge which are so highly ionized that only one electron is left in each ion, the so-called
iso-electronic sequence of hydrogen. The above calculations can easily be adjusted for
these hydrogenic ions with only two corrections: In the formula for the reduced mass µ
of the system, the proton mass mp has to be substituted with the higher nuclear mass
mnuc of the heavier element. These nuclei are even more massive compared to the electron
than the proton already was such that the reduced mass comes even closer to the electron
mass. The second change is in the description of the Coulomb potential. The Coulomb
potential depends on the product of the charges of the involved particles. The electron
charge remains the same but the nuclear charge increases with the number of protons Z.
Therefore, the the internal Hamiltonian has to be modified to

Ĥ =
p̂

2µ
− Ze2

r
. (3.23)

Consulting the single steps of the above derivation, it can be seen that the result in eq. 3.22
still holds as long as a more general definition of the Rydberg constant and the Bohr radius
are used:

Ry→ RyZ =
~2

2µa2
Z

, a0 → aZ =
~2

µZ2e2
= Z−2 · 0.53 Å. (3.24)

The hydrogenic ions are the simplest example of an iso-electronic sequence. Unfortunately,
the other iso-electronic sequences do not follow such a simple scaling rule for the level
energies. This is due to the fact that only the electron-nucleus interaction scales with
the nuclear charge Z while the interactions between the electrons around the nucleus are
unaffected by Z (Friedrich, 1990).
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3.3 Fine Structure Splitting

Although for low-Z elements the derived energy levels in eq. 3.22 are a quite good descrip-
tion of experimental findings, the ansatz with the time dependent Schrödinger equation
has a major problem. The reason is that it violates the symmetry requirements of the
theory of special relativity as it contains the second spatial derivative but only the first
derivative with respect to time. Paul Dirac (1928) proposed an alternative equation which
also only contains the first derivative with respect to spatial coordinates with the Hamil-
tonian Ĥ = cαp̂ + βm0c

2. This Hamiltonian is constructed such that its square fulfills
the relativistic energy momentum relation E2 = p2c2 +m2

0c
4 and therefore goes along with

special relativity. The only way α and β can meet this criterion is if they constitute at
least 4 × 4 matrices. In this case also the wavefunctions ψ(r, t) have to be turned into
four-component spinors, making the Dirac equation really a set of four partial differential
equations. In the standard representation β and the three components of α are composited
of combinations of Pauli (1927)’s two-dimensional spin matrices.
The stationary ansatz ψ(r, t) = ψ(r, t = 0) exp

(
− ı

~Et
)

can also be applied to the Dirac
equation. A potential V added to the Hamiltonian then leads us from the time-independent
Dirac equation of a free particle to a comparable point as the time-independent Schrödinger
equation: with the time-independent Dirac equation of a particle in a potential

(cαp̂ + βm0c
2 + V )ψ = Eψ (3.25)

we “only” need to find the energy eigenvalues in order to solve the problem. One could
argue that the addition of a central potential again violates the requirements of the theory
of special relativity as it sets one frame of reference apart from all the others. A relativistic
treatment, however, does not allow to differentiate the two-body problem into a center-
of-mass motion and an internal Hamiltonian as was done above with the non-relativistic
Schrödinger equation. Since also the nucleus of the atom can be considered at rest due to
its comparatively high mass, a relativistic approach can nevertheless be justified as long
as the energy of the electron is small compared to the rest mass mnucc

2 of the nucleus
(Friedrich, 1990).
In the discussion so far nothing changed in terms of the radial symmetry of the Coulomb
potential of the nucleus. Therefore, ψ can still be separated into radial and angular
components, the latter represented by spherical harmonics. With this separation, the
Dirac equation can be simplified to a system of two coupled ordinary differential equations,
called the radial Dirac equation, which in principle is not harder to solve than the radial
Schrödinger equation.
Often the completely relativistic ansatz is omitted, especially if mainly the outer valence
electrons are in the focus of interest. Instead first-order relativistic corrections, derived
from the Dirac equation under the assumption that the velocity of the electron is small
compared to the speed of light, are added to the non-relativistic Hamiltionian used in the
Schrödinger equation (Cowan, 1981):

− 1

2µc2
(E − V )2 − ~2

4µ2c2

(
dV

dr

)(
∂

∂r
− 2

r
l̂ · ŝ
)
. (3.26)

The first term represents the kinetic energy of the electron and is a correction to the kinetic
energy term in eq. 3.9 due to the relativistic variation of mass with velocity. This term also
introduces the energy eigenvalue E of the Schrödinger equation directly into the Hamilton
operator itself. − ~2

4µ2c2

(
dV
dr

)
∂
∂r

is known as the Darwin term and accounts for the relativistic
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non-localizability of the electron. The last term is the spin-orbit term ~2

4µ2c2

(
dV
dr

)
2
r
l̂·ŝ which

for the calculation of the energy-level structures of complex atoms might be considered
the most important one of these corrections. It stands for the interaction between the
electron’s spin angular momentum ŝ, i.e., the rotation of the electron around its own axis,
and the magnetic field seen by the electron due to its charge moving through the nuclear
electric potential.
The spin-orbit term, which was introduced to the fully relativistic approach through the
product of the Pauli spin matrices and the momentum vector, is in both, the partially and
the fully relativistic treatment of the problem, responsible for the canceling of some of the
degeneracies of the energy levels. As the orbital angular momentum l̂ and the electron
spin ŝ act on different sets of coordinates3, they commute with each other (Cowan, 1981).
Therefore, their product can be rewritten as

l̂ · ŝ =
1

2
(̂2 − l̂2 − ŝ2) (3.27)

introducing the new parameter of the total angular momentum ̂ = l̂+ ŝ. This substitution
has the advantage that, in contrast to l̂ · ŝ, the eigenvalues of ̂2, l̂2 and ŝ2 can easily be
derived: l̂2|ψ〉 = ~2l(l + 1)|ψ〉, ŝ2|ψ〉 = ~2s(s + 1)|ψ〉 = 3/4~2|ψ〉 and ̂2|ψ〉 = ~2j(j +
1)|ψ〉. Since the spin always equals ±1/2, in a one electron system for every total angular
momentum there are only two possible values for the angluar momentum quantum number
l = j ± 1/2.
After all operators are sufficiently substituted by their eigenvalues in the fully and partially
relativistic ansatzes, the resulting differential equations can be solved. Up to a certain
degree both approaches then lead to the same result (Friedrich, 1990; Cowan, 1981)

Enj = m0c
2

[
1− (Zα)2

2n2
− (Zα)4

2n3

(
1

j + 1/2
− 3

4n

)
+ (· · · )

]
. (3.28)

The first and second term are already known as the rest energy of the particle and the
non-relativistic spectrum with the binding energies En = Ry/n2. Much more interesting is
the third term. While it lowers the energy of all levels, the shift is largest for total angular
momenta j = 1/2 and smallest for j = n − 1/2. This difference in the energy shifts lifts
the degeneracy of levels with the same principal quantum number n but different total
angular momenta j. A scheme of this splitting is shown in Fig. 3.1 for levels n = 1 to
n = 3 in hydrogen. This level splitting is commonly referred to as fine structure splitting.
Accordingly, α = e2/(~c) ≈ 1/137 is called the fine structure constant characterizing the
strength of the electromagnetic interaction. We will keep in mind for later that the sepa-
ration of the 2p1/2 and 2p3/2 energy levels increases with the fourth power of the nuclear
charge.

3.4 Further Splitting

The more approximations are replaced by accurate calculations, the more degeneracies
can be overcome, at least theoretically; unfortunately, experiments are usually restricted
in their resolving power by the state of the technology. For instance, treating the electron-
proton interaction far beyond the capabilities of Dirac with methods of quantum electro-
dynamics (QED) draws up a small splitting also between the ns1/2 and np1/2 levels, called

3The orbital angular momentum depends on the spatial coordinates, r, while the rotation of the electron
around its axis is independent of the orbital position of the electron and provides its own spin coordinate.
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Sketch after Friedrich (1990).

the Lamb-shift (Lamb & Retherford, 1947). If the atomic nucleus is seen as an object with
small finite size and intrinsic angular momentum (nuclear spin) instead of a structureless
point particle, the more complex calculation leads to corrections even smaller than those
of the fine structure, otherwise known as hyperfine structure. Both effects play no role for
our measurements. The resolution is not good enough to distinguish lines separated by
them.

The presence of external electric and magnetic fields can also lead to line shifts and split-
tings through the interaction of these external fields with the electric and magnetic mo-
menta of the atom. The Zeeman effect (Zeeman, 1896a,b, 1897) describes the influence of
a uniform external magnetic field of flux density B with the intrinsic magnetic moment
µ of the atom. The interaction between the two of them has to be accounted for with an
additional term

Ĥmag = −B · µ (3.29)

in the Hamiltonian of the system. Because of the direct interaction of the magnetic field
with the magnetic moment of the atom, the (2J + 1)-fold degeneracy in the magnetic
quantum number of the energy levels is removed as the total angular momentum vector
precesses around the direction of the magnetic field. With µ = −µB[J + (gs− 1)S], where
gS ≈ 2 is the anomalous gyromagnetic ratio of the electron spin and the Bohr magneton,
the intrinsic magnetic moment is proportional to the Bohr magneton (Procopiu, 1913)

µB ≈ 0.06 meV T−1. (3.30)

For very strong magnetic fields, the interaction becomes so strong that L and S uncouple.
The splitting of the energy levels due to the magnetic field is then stronger than the
multiplet splitting (Herzberg, 1937). This effect is called Paschen-Back effect (Paschen &
Back, 1912, 1913).

In 1913 Johannes Stark found a similar effect for external static magnetic fields (Stark,
1913, 1914; Stark & Wendt, 1914). The electric field E does not act directly on the
intrinsic magnetic moment of the atom associated with J but rather with its electric dipole
moment. In the presence of the electric field, the atom becomes electrically polarized, i.e.,
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the positively charged nucleus is separated from the center of gravity of the negative
charges. Because of the resulting electric dipole moment D, the atom tries to set itself
in the direction of the smallest energy. The corresponding precession of J again leads to
a separation of the energy levels in the magnetic moment, M . As for the Zeeman and
Paschen-Back effects, a very strong field arranges for decoupling of L and S (Herzberg,
1937). The additional term to the system’s Hamiltonian is

Ĥelec = −E ·D = −E
∑

i

eri (3.31)

and results in an energy shift in the order of

∆E = 3e|E|a0

Z
≈ 1.59 · 10−10 e|E [kV m−1]|

Z
[keV] (3.32)

where a0 is the Bohr radius (Bransden & Joachain, 1937).

Although there are relatively strong magnetic and electric fields around in an electron
beam ion trap, because of the very small values of the Bohr magneton (eq. 3.30) and the
energy shift due to the electric dipole moment (eq. 3.32) both effects are negligibly weak
compared to the energy of the X-ray photons produced with this device.

3.5 Many-electron Systems

The Hamiltonian describing the hydrogen atom can be rather simply extended to many-
electron systems. In principle, it just has to contain the electron-nucleus interaction for
every electron instead of only one and additionally include the interactions between the
electrons themselves. Again the choice is between the non-relativistic approach and rela-
tivistic corrections.

H = Hkin +Hel−enuc +Hel−el +Hs−o (+Hmass−velocity +HDarwin) (3.33)

=
p̂2

nuc

2mnuc

+
N∑

i=1

(
p̂2

e,i

2me

− Ze2

|re,i − rnuc|

)
+
∑

i<j

e2

|re,i − re,j|
+
∑

i

ξi(ri)(li · si) (+ . . . )

Hs−o denotes the spin-orbit interaction of every electron and, as in eq. 3.26, is mostly
described by

ξ =
α2

2

1

r

(
dV

dr

)
. (3.34)

The mass-velocity and the Darwin term only depend on the distances between the electrons
and the nucleus |re,i − rnuc|. Therefore, they only shift the absolute energies of a group
of related levels but not their relative positions to each other and are hence not specified
here in greater detail.

If there was no two-body interaction, the Hamiltonian would just be the sum of N single
particle Hamiltonians whose eigenfunction would be equal to the sum of those of the
hydrogenic ion. Unfortunately, the two-body interaction is everything but small. The
search for an analytical solution of the Schrödinger or Dirac equation for the many-electron
Hamiltonian is therefore a much more complex issue. The values of 4N variables (each
electron has three spatial and one spin coordinate) have to be found. For N ≥ 2 there
are no exact solutions and approximations have to be applied. Usually this is done by
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Fig. 2.2. Schematic illus-
tration of the mean single-
particle potential V (r) (solid
line) in the Na atom (Z =
N = 11)

retains the independence of the electrons. A consistent derivation of the mean
single-particle potential is given in Sect. 2.3.1. Qualitatively, the electrostatic
repulsion of one given electron by all other electrons is described by an average
screening potential which modifies the single-particle potential (electrostatic
attraction by the nucleus) acting on that electron. Those parts of the two-
body interaction which are not included in the mean single-particle potential
constitute a residual two-body interaction and this is much less than the full
two-body interaction. Take e.g. an electron in an N -electron atom or ion
whose nucleus has charge number Z. At large distances from the nucleus (and
the other electrons) the electron feels a screened Coulomb potential −(Z −
N + 1)e2/r. At small separations r < aZ , however, it feels the full unscreened
attraction of the naked nucleus: −Ze2/r. In the transition region from small to
large separations the mean single-particle potential changes smoothly from the
unscreened potential to the screened potential as is illustrated schematically
for the case of a neutral sodium atom (Z = N = 11) in Fig. 2.2.

The single-particle eigenstates in such a mean single-particle potential are
no longer the eigenstates of a pure Coulomb potential, but they can still be
classified by the quantum numbers n, l, m. Since the mean single-particle po-
tential is always taken to be radially symmetric, the single-particle energies for
given angular momentum quantum number l are degenerate in the azimuthal
quantum number m. However, eigenstates with a given principal quantum
number n are no longer degenerate in l, because the potential is no longer a
pure Coulomb potential. A glance at Fig. 2.2 shows that states with low l are
most strongly influenced by the stronger attraction of the unscreened nucleus,
because their wave functions have the largest amplitudes at small separations
– see Fig. 1.4 and (1.78). As a result the levels with low l are shifted down-
wards considerably relative to the levels with higher l. A typical spectrum of
a single-particle Hamiltonian containing a mean single-particle potential as in
Fig. 2.2 is shown in Fig. 2.3. The downward shift of the l = 0 levels is so large

Figure 3.2: The single-particle

mean potential between the limits

of the full Coulomb potential and

the completely screened one for Na

(from Friedrich, 1990).

equipping the wavefunctions with several adjustable parameters. Through variation of
these parameters a “best fit” according to some sensible criterion has to be found (Cowan,
1981).

If the correlation among the positions of various electrons caused by their Coulomb re-
pulsion is accounted for through the explicit appearance of the distance rij between two
electrons in ψ, systems consisting of three to four electrons are already almost impossible
to solve analytically. Even a much simpler treatment of the electron-electron interaction
through perturbative calculations of just their energy correlations becomes extremely ex-
tensive for N > 6. This complexity is a real issue, since depending on the research interest
the energy levels of systems with a number of electrons up to the order of 100 are desired.

Although the correlations between the electron positions need to be accounted for in the
base functions, here it shall be enough to shortly introduce the mean field approximation
which discards a large fraction of this interaction. In the mean field approximation, many
of the electrons present are combined to an average single-particle potential, the mean
field (Friedrich, 1990). That is, the electrostatic repulsion suffered by an electron from all
other electrons is described by the average repulsive potential that modifies the attractive
potential of the nucleus as it is felt by the electron. In other words, any given electron
moves independently of the others in the (stationary) nuclear field and an additional spher-
ically symmetric field due to the time-average over the motion of the remaining electrons.
Then every electron not contained in the mean field only constitutes a residual two-body
interaction, which is much less than the normal two-body interaction. In case there is only
one electron left, it can be described sufficiently by an one-electron wavefunction.

In an ion withN electrons and nuclear charge Z, this electron then sees a screened Coulomb
potential −(Z − N + 1)e2/r at large distances to the nucleus as most of the attractive
nuclear potential is shielded by the electron cloud of the other N − 1 electrons. If the
electron is positioned close to the nucleus, it will rather see the completely unscreened
potential of the nucleus −Ze2/r. In regions in between, the potential changes smoothly
between these two limits (see Fig. 3.2). As this potential is no longer a pure Coulomb
potential but still radially symmetric, the eigenstates with a given principal quantum
number n are not degenerate in the angular momentum quantum number l.
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3.6 LS-vs. jj-coupling

Since an N -electron ion has a plethora of eigenstates, degenerate or not, it is convenient
to find a self-consistent scheme to label them unambiguously. The best way to do this is
to describe them by a combination of their characteristic properties. Therefore, we look
for constants of motion, i.e., operators that are commuting with the Hamiltonian. These
are called good quantum numbers.

3.6.1 LS-coupling

In case of no spin-orbit coupling and for light atoms where the spin-orbit interactions are
negligibly weak compared to the interactions between electrons, the total spin is a constant
of motion as the remaining portions of the Hamiltonian are independent of the spin. Since
the total angular momentum is a good quantum number, also the construct L̂ = Ĵ− Ŝ has
to be a constant. Coupled through electrostatic interaction, the orbital angular momenta
and the spins of the single electrons combine to these total angular momentum

L̂ =
∑

i

li (3.35)

and spin operators

Ŝ =
∑

i

si. (3.36)

Their eigenvalues are
L̂2|ψ〉 = L(L+ 1)~2|ψ〉 (3.37)

and
Ŝ2|ψ〉 = S(S + 1)~2|ψ〉 (3.38)

respectively. There are (2L + 1)× (2S + 1) degenerate eigenstates per (L̂, Ŝ)-pair, corre-
sponding to the third components Lz and Sz of the momentum operators with eigenvalues
mL and mS, which range from −L to +L and −S to +S, respectively, in integer steps.
The naming scheme following this convention is called Russell-Saunders coupling scheme
after its “inventors” Russell & Saunders (1925). An overview over the angular momentum
notation can be found in appendix A.

Historically certain series of observed spectral lines were named after their looks: sharp
(s), principal (p), diffuse (d) and fundamental (f). Only later it was realized that these
correspond to different values of the same physical parameter, the orbital angular mo-
mentum. Since it is often easier to reference a certain configuration with a set of letters
instead of a bunch of numbers, these historically grown abbreviations were kept but asso-
ciated with their new physical meaning, i.e., values of l = 0, 1, 2, 3, . . . are written as l =
s, p, d, f, . . . (continuing alphabetically). For higher values of L the alphabet ist just contin-
ued, omitting the letters already in use. To distinguish between the total orbital angular
momentum and the momenta of the single electrons, capital letters indicate the former
while the latter are denoted by small letters like throughout the previous derivations.

The spin quantum number can be used to determine the number 2S+1 of levels each term
splits into or, in other words, how many different total angular momenta can be realized
through the combination of L and S. This number, called multiplicity, is noted to the
upper left corner of the orbital angular momentum. In practice, the number of levels in a
term is only given by the multiplicity if S < L but by 2L+ 1 for L < S.
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Already for small spin-orbit coupling when LS-coupling still approximately holds, the term
VLS(ri)L̂i ·Ŝi in the one-body interaction is responsible for the Hamiltonian not commuting
with L̂ and Ŝ anymore but only with the total angular momentum Ĵ = L̂ + Ŝ. Through
this magnetic interaction each term splits into min {(2S + 1), (2L+ 1)} levels with total
momenta J = |L − S|, |L − S| + 1, . . . , L + S. These are noted at the lower right corner
of the total orbital angular momentum. The general level description then looks like

2S+1LJ . (3.39)

Each of these levels still is (2J + 1)-fold degenerate in the quantum number MJ , the
eigenvalue of the z-component Jz of the total angular momentum vector, adopting values
between −J and J with integer step size. This hyperfine structure only shows up if the
nuclear spin I does not vanish and interacts with the momenta of the electrons.

Levels in different shells, i.e. with different principal quantum number n, can have the
same such label. To specify which one exactly is referred to, atomic states are additionally
labeled with nl of occupied single particle states. For instance, an electron with principal
quantum number n = 2 and orbital quantum number l = 1 would be in the 2p subshell.
A complete set of these single-particle states are called a configuration. Beyond that the
naming convention speaks of a term if values of L and S are given. A level has the
additional information about its total angular momentum J .

3.6.2 jj-coupling

The above classification in the LS-coupling scheme relies on L and S at least being approx-
imate constants of motion. However, with increasing nuclear mass the spin-orbit coupling
grows ever stronger up to a point where the LS-coupling really is not even approximately
valid any more. In this limit rather the coupling between the single-electron orbital an-
gular momentum and spin becomes a constant of motion. Then these single-particle total
angular momenta ji couple to the total angular momentum of the ion.

In this so-called jj-coupling, the level description is written as a list denoting how many
electrons occupy a certain subshell. The total angular momentum J is then noted as a
subscript to parentheses enclosing the label. For example, (1s1/22s22p1/22p2

3/2)1 describes a
carbon-like system with one electron in the first shell and two in the 2s, one in the 2p1/2and
two in the 2p3/2subshells that has a total angular momentum of J = 1. Closed shells and
subshells are often omitted. As long as the total number of electrons for this system is
known, the fragmentary notation is still legible. Unfortunately, this characterization of
the levels is not completely unique. The same set of single-particle ji can be combined in
different ways to reach the same total angular momentum J of the whole system. These
different paths of coupling lead to different level energies but can not be distinguished
from the notation.

3.6.3 Transition from LS- to jj-coupling

For systems with pure LS coupling, the wavefunctions of states obeying the selection
rules are strictly orthogonal. Therefore, for states not doing so, the overlap integral,
line transition probabilities, and gf -values are equivalent to zero. The semi-forbidden or
intercombination lines, where levels of different multiplicity are combined through electric
quadrupole transitions, only occur in the regime where LS-coupling starts to mix with
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jj-coupling. Once the spin-orbit interaction becomes much stronger than the Coulomb
terms, the coupling conditions approach pure jj-coupling.
Usually, if the energy difference between two terms is larger than the fine structure splitting
of these terms, LS coupling is applied, else jj-coupling is the method of choice (cf. Fig. 3.3).
But this difference also depends on how the configurations are combined to the energy
levels in the course of the calculation. In the transition region between LS- and jj-coupling
there is no good ab initio rule of thumb whether to use one or the other for calculations.
Consequently, for the same iso-nuclear sequence usually calculations in LS- as well as jj-
coupling can be found. Due to their different physical bases they can not be converted
into each other and thus are not easily comparable. The only way is to approximately
match them up by hand so that their quantum numbers do not violate each other.

3.6.4 Matching the Notation

The best way to match the notation of LS- and jj-coupling is to determine all energy levels
of an ion in either of the two schemes, sort them for energy and then assign them to each
other in that order, keeping an eye on the total angular momentum.
There are various methods how to determine all possible configurations in the LS-coupling
regime, especially the Journal of Chemical Education is rich of such cookbooks; see, e.g.,
Tuttle (1967), Vicente (1983), Pradhan & Nahar (2011), and, for writing down the ground
state only, Gorman (1973). Here, only the underlying principle shall be outlined shortly.
For a set of configurations, for example ns1/2n

′s1/2 (withn 6= n′, non-equivalent electrons) or
nsq (equivalent electrons), write down all possible spin combinations resulting in the total
spin magnetic moment MS. Then for each of these MS collect the possible combinations
of orbital magnetic moments ml, which can take on values from −l to +l in increments of
1, and sort them into groups with the same total orbital magnetic moments ML =

∑
ml.

For non-equivalent electrons, i.e., those differing in at least one of the quantum numbers n
or l, all of these permutations also exist, while for equivalent electrons, i.e., with the same
n and l the Pauli (1925) exclusion principle has to be obeyed. Pauli’s prniciple states that
no two electrons in a system can have the exact same set of quantum numbers (n,l,ml,ms).
Therefore, the equivalent electron combinations can be obtained by crossing out all of the
non-equivalent electron combinations where any (ml,ms) pair shows up more than once.
Since for a certain L, the ML goes from −L to L in increments of 1, we now can look for
the highest ML in our table; a term with that L-value has to exist. This L-value is written
down at the same time noting the occuring MS. For this set of −L, −L + 1, . . .L values
one corresponding ML configuration is crossed out of the table and again the highest ML

is selected. These steps are taken until no entries remain in the table. Afterwards, for each
L-value the same procedure is applied to the MS values to determine the corresponding
spin multiplicities. The total orbital angular momentum J in each multiplet then runs
from |L− S| to (L+ S).
To sort the terms obtained this way for their energy, Hund (1925)’s rules have to be
applied. They state

• S-rule: the LS-term with the highest spin multiplicity (2S + 1) is lowest in energy,

• L-rule: for states of the same multiplicity those with highest total L are lowest in
energy,

• J-rule: for less than half-filled sushells the lowest J-level has the lowest energy, but,
since the distribution of holes and electrons in a subshell is equivalent, this rule turns
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around for more than half-filled subshells, where the highest J-level lies lowest in
energy.

Similarly, to obtain the jj-coupling levels the easiest and most secure (in terms of complete-
ness) approach is to set up tables; see, e.g., Rubio & Perez (1986), Gauerke & Campbell
(1994), Orofino & Faria (2010) and Tuttle (1980) for various methods. This time, first
the possible j values for an electron have to be found via j = l ± s. Keeping the Pauli
principle in mind in case equivalent electrons (for jj-coupling the unique sets of quantum
numbers are (l,s,j,m)), for all combinations of the ji the corresponding mj are permuted
to calculate and tabulate the possible MJ which are, as for ML in LS-coupling, used to
derive the possible J-values for each of these configurations.

Since in jj-coupling, L and S are no good quantum numbers, Hund’s first two rules are not
applicable here. Nevertheless, we would expect configurations to have increasing energy
with increasing

∑ |ji|, i.e., for the example of two equivalent l =p electrons, (1/2)2,
(1/2)(3/2), (3/2)2 have subsequently higher energies. Within these configurations, the J
follow Hund’s third rule, the J-rule.

This approach, however, has a few flaws. Although very useful, Hund’s rules are only
empirical regularities but not strict laws. It is found that for the higher energy levels there
are often exceptions to these rules. One of these exceptions is, for example, the 1s22s1/23p3

configuration of carbon. Here, the observed term order is

5S <3 D <3 P <1 D <3 S <1 P (3.40)

while according to Hund the 3S with its higher multiplicity should have lower energy than
the 1D term (Levine, 1983). Therefore, they should only be used for the lower energy levels
close to the ground state. Hund’s rules may be used for excited states, but due to more
than one subshell being open, they become increasingly inaccurate (Pradhan & Nahar,
2011). Moreover, the sorting within multiplets (different J values) may sometimes change
its energy order between LS- and jj-coupling (see, e.g., Fig. 1 in Gauerke & Campbell
(1994)).

3.7 Selection Rules

If an ion is in an excited state with energy E2, it may decay spontaneously to another state
of lower energy E1. The released energy leaves the system in form of a photon with energy
E2−E1. The energy of a photon can be translated into its frequency ν, wavelength λ = c/ν
or wavenumber σ = 1/λ via the relation E = hν = E2 − E1. In theory any two energy
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levels could be combined in such a way to create a spectral line. This Ritz-combination
principle was developed by Walther Ritz (1908) when he generalized the Rydberg-formula,
which was found as a mathematical relationship between the lines in the Balmer-series4

in hydrogen, to other atoms. Some of these combinations, however, have negligibly low
transition probabilities and therefore only have very low intensities, while others dominate
the spectrum. The difference is caused by various selection rules. These selection rules for
the quantum numbers can be derived from quantum mechanical calculations, where the
expectation value

〈ψ|0|ψ′〉 ≡
∫∫∫ ∞

−∞
ψ∗(ri)Ôψ

′(ri)dxidyidzi (3.41)

of the operator Ô needs to be non-zero for the initial (ψ) and final (ψ′) wavefunctions.

3.7.1 Parity

Before we discuss some of the selection rules, we first have to learn about the parity of
a state (Cowan, 1981). The total wavefunction ψ(ri, si) is a function of the positional-
coordinate vectors ri and the spin angular momenta si of the N electrons in a system
(atom or ion). At the same time the Hamiltonian Ĥ is a function of the coordinates,
the corresponding linear momenta pi, the angular momenta li = ri × pi and the spins
si. Together ψ and Ĥ have to fulfill the Schödinger equation with eigenvalue E for all
possible values of the coordinates, even negative ones. The spin and orbital angular
momenta are unaffected by flipping of the coordinate signs r → −r, p → −p = i~∇.
For an isolated system with no external field, flipping of the system does not affect the
internal energy structure, i.e., H(−r,−p, l, s) = H(r,p, l, s). Thus ψ(r, s) and ψ(−r, s)
are solutions to the same Schrödinger equation and can only differ by a constant factor:
ψ(−r, s) = c·ψ(r, s). Since this relation is true for all coordinates, also ψ(r, s) = c·ψ(−r, s)
is true and consequently c = ±1. According to the value of c, a wavefunction is said to
have even (+) or odd (−) parity. Applying the inversion of the coordinates (r → −r,
θ → π − θ, φ→ π + φ) to the wavefunction

ψ = R(r)Ylm(θ, φ)σms(sz) (3.42)

separated in radial, angular and spin functions, we find

ψ(r, s) = R(r)Ylm(θ, φ)σms(sz)→ ψ(−r, s) = (−1)lR(r)Ylm(θ, φ)σms(sz). (3.43)

The parity for coupled wavefunctions, ψ =
∏

i ψli,mi , is therefore given by

p = (−1)
∑
li . (3.44)

For odd parity the LS notation is extended by a superscript ◦, e.g., 2P◦1/2.

3.7.2 Back to the Selection Rules

Now consider an operator Ô to have parity po. If we change the signs of the integration
variables r → −r, the expectation value of Ô changes for wavefunctions with parities p

4transitions from n ≥ 3 to the n = 2 shell
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and p′ like (Cowan, 1981)

〈ψ|Ô|ψ′〉 =

∫∫∫ −∞

∞
ψ∗(−ri)Ô(−ri)ψ

′(−ri)(−dxi)(−dyi)(−dzi)

= (−1)p+po+p
′
∫∫∫ ∞

−∞
ψ∗(ri)Ô(ri)ψ

′(ri) dxi dyi dzi

= (−1)p+po+p
′〈ψ|Ô|ψ′〉. (3.45)

Obviously p+po+p
′ has to be even for the minus sign to vanish or else the expectation value

would have to be zero. For zero expectation value, however, the transition between the two
states does not take place. So if the operator Ô has odd parity, the parity of the initial
wavefunction ψ must have opposite parity of the final wavefunction ψ′. For operators
with even parity, the parity of the wavefunctions has to be the same. The wavefunctions
for an isolated field-free ion then must have the same parity since the corresponding
Hamiltonian has even parity. For instance, an atom in an external magnetic field −Bµ
(µ being the magnetic moment of the atom) has an energy with even parity, while the
interaction between an external electric field E and the atom’s electric dipole

∑
i(−e)ri

has odd parity.

Similar but less general calculations can be done for other quantum numbers. The ampli-
tude |Mif |2 of the transition momentum integral

Mif =

∫
ψiµ̂ψ

∗
f dr (3.46)

gives the transition probability of one eigenstate of the atom or ion to another one. From
the dependency of the integral of the transition momentum operator µ follows that any
selection rules derived from this equation are only valid for the considered transition
moment. In other words, there is a separate set of selection rules for each of the electric
dipole, magnetic dipole, electric quadrupole, etc., transitions. The integral does not have
to be solved explicitly to determine the selection rules. Since only transitions between
eigenstates are allowed for which the integral is non-zero, symmetry considerations are
sufficient to derive the selection rules.

For demonstration purposes, let us have a look at electric dipole transitions in hydrogenic
ions, following the calculations of Schpolski (1976). The electric dipole moment is given
by d = −e

∑
I ri = −er. We also remember that the wavefunctions separate into radial

and angular contributions ψnlm = Rn(r)Ylm(θ, φ). Then

Mif = −
∫
Rn(r)Y ∗lm(θ, φ)erRn′(r)Yl′m′(θ, φ)r2 sin θ dr dθ dφ (3.47)

where (nlm) and (n′l′m′) denote the initial and final set of quantum numbers.

There is no restriction for the principal quantum number n, i.e., the electron can jump over
as many shells as it wants to (with some care about ionization limits). Since a product
is zero if only one of the factors is zero and because the angular part of the integral
does not depend on the distance r of the electron to the nucleus, it is enough to examine
the integration over the angles. With Ylm ∝ eımφPlm(cos θ), Y ∗lm ∝ e−ımφPlm(cos θ), r in
spherical coordinates5, and cosine and sine expressed through the exponential function,

5x = r cosφ sin θ, y = r sinφ sin θ, z = r cos θ
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we can write the three angular components of the integral as

Mif,x ∝
1

2

∫ 2π

0

[
eı(m

′−m+1)φ + eı(m
′−m−1)φ

]
dφ

∫ π

0

PlmPl′m′ sin
2 θ dr dθ

Mif,y ∝
1

2

∫ 2π

0

[
eı(m

′−m+1)φ − eı(m
′−m−1)φ

]
dφ

∫ π

0

PlmPl′m′ sin
2 θ dr dθ (3.48)

Mif,z ∝
∫ 2π

0

eı(m
′−m)φ dφ

∫ π

0

PlmPl′m′ cos θ sin θ dr dθ.

Although the magnetic quantum number m is only important in the case of hyperfine
splitting of levels, we start with this parameter.

∫ 2π

0
eıkx dx is only non-zero for k = 0.

Therefore, only if the selection rule

∆m = m′ −m = 0,±1 (3.49)

is fulfilled, there is at least one component of Mif with a finite value.
For the selection rules of the orbital angular momentum quantum number, we first have a
look at Mif,z. We already know that m ≡ m′ if this component is not supposed to vanish.
With the additional substitution cos θ → x, the proportionality of Mif,z simplifies to

Mif,z ∝
∫ +1

−1

PlmPl′mx dx. (3.50)

A recurrence formula for the associated Legendre polynomials Plm with constant m reads
(Abramowitz & Stegun, 1964)

xPlm(x) =
l +m

2l + 1
Pl−1,m +

l −m+ 1

2l + 1
Pl+1,m. (3.51)

The Plm are also orthonormal functions, i.e.,
∫
PlmPl′m′dx = δll′δmm′ . Substituting the

recurrence formula eq. 3.51 into Mif,z (eq. 3.50) leads to the selection rule

∆l = l′ − l = ±1. (3.52)

Using a second recurrence formula for Plm (Abramowitz & Stegun, 1964)

Pl+1,m = Pl−1,m + (2l + 1)
√

1− x2Pl,m−1, (3.53)

which connects functions with m and m−1, and the integrals for Mif,x and Mif,y together
with ∆m = ±1 results in the same selection rule as in equation 3.52.
Selection rules for even more quantum numbers like, e.g., the spin, the quantum numbers
of many-electron systems and special conditions like LS-coupling can be found in a similar
manner. One of the important selection rules is ∆S = 0 which forbids electrons to jump
between terms of different multiplicity. Table 3.1 gives an overview over the selection rules
for electric and magnetic dipole and electric quadrupole transitions.

3.8 Kα Spectra

As indicated in section 3.1 the Rydberg series of spectral lines connects levels of different
principle quantum numbers n but the same subshell with orbital angular momentum l.
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Table 3.1: Selection rules in atomic spectra (from Garstang, 1962, Table I).

Electric dipole Magnetic dipole Electric quadrupole

(1) ∆J = 0,±1 ∆J = 0,±1 ∆J = 0,±1,±2

(J = 0 = 0) (J = 0 = 0) (J = 0 = 0, 1/2 = 1/2, 0 = 1)

(2) ∆M = 0,±1 ∆M = 0,±1 ∆M = 0,±1,±2

(3) Parity change No parity change No parity change

(4) One electron jump No electron jump One or no electron jump

∆l = ±1 ∆l = 0 ∆l = 0,±2

∆n = 0

(5) ∆S = 0 ∆S = 0 ∆S = 0

(6) ∆L = 0,±1 ∆L = 0 ∆L = 0,±1,±2

(J = 0 = 0) (J = 0 = 0, 0 = 1)

notes
Rules (1) to (3) are rigorous as long as nuclear pertubations and two-quantum
processes are abesent.
Rule (4) only holds for negligible configuration interaction.
Rules (5) and (6) are for LS-coupling only.
Forbidden lines can occur if (1) to (3) are only violated for the electric dipole
transitions but not for one of the others, if the approximate rules (4)-(6) are
violated, if the atom suffers from external or nuclear perturbations or if two-

quantum processes take place.
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Figure 3.4: The Rydberg series for He-like (green) and H-like silicon, calculated with FAC

(see section 3.12).
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In a similar manner as the quantum number l is denoted with letters, the electron shells
n = 1, 2, 3, . . . also have letter equivalents n = K, L, M, . . . . Since the allowed values of
the orbital angular momentum are l = 0, 1, 2, . . . , n− 1, which due to the interaction with
the spin again splits further into sublevels j = |l± 1

2
|, it is readily seen that the K-level is

single, the L-level triple and the M-level quintuple, etc..
In X-ray spectra line series very similar to the Rydberg series in hydrogen were found
(compare Fig. 3.4). But while in optical spectra the structure is quite different for elements
belonging to different columns of the periodic table6, in X-ray spectra the structure of the
line series is of the same type in all elements. Since the chemical behavior is determined
by the electrons in the outer region of the atom, the likeness of X-ray spectra of different
elements points to their origin in the interior of the atom (Born, 1969). An electron
is ionized away from the innermost shell (K) by collisional or photoionization, leaving
behind a vacancy in the tightly bound subshell. Through radiative transitions of one of
the outer electrons, the excited state relaxes back into the ground state. This relaxation
can either happen through a single transition or through a cascade of transitions where
every transition leaves a vacancy in a less tightly bound shell to be filled by the next
transition. In our case of highly ionized material, however, there are not many subshells
available to create lengthy cascades.
In his book Spektroskopie der Röntgenstrahlung (Siegbahn, 1924), Karl Manne Siegbahn,
one of the pioneers in X-ray spectroscopy, proposed a notation to characterize these tran-
sitions, today known as Siegbahn notation. According to his convention the levels of an
electron shell are counted toward increasing energy and added as a numerical subscript to
the shells letter. That is, the levels 1s1/2, 2s1/2, 2p1/2, 2p3/2, 3s1/2, . . . are referenced as KI,
LI, LII, LIII, MI, . . . . The subscript roman numerals are also often just written as Arabic
numbers. Transitions between those subshells are then either noted as a combination of
the Siegbahn labels (iupac7 notation), or similar to the notation of the Rydberg series
(Siegbahn notation): the series is named after the letter of the principal quantum number
of the destination level, e.g., for transitions to the K-shell, we have the K series. The
series denomination is followed by a Greek letter indicating the origin of the transition,
i.e., a transition from the next higher shell is labeld with α, from the second to next shell
with β, and so on. If fine structure splitting plays a role, the sublevels are denoted by a
subscript numeral. For example, a spectral line corresponding to a transition from the 2p
shell to the 1s shell can be identified as

Kα1 =̂ KL3 =̂ 1s1/2 → 2p3/2

Kα2 =̂ KL2 =̂ 1s1/2 → 2p1/2

Kα =̂ KL =̂ unresolved KL doublet.

An exception to this rule is the notation for hydrogenic ions. For historical reasons, the
notation for H-like ions follows the description of the Lyman series (Lyman, 1906), i.e.,
Lyα, Ly β, etc..
Moseley (1913, 1914) was able to deduce an empirical law for the energies of Kα lines of
different elements from his measurements:

E =
1

h

3

4
Ry(Z − a)2 =

1

h
Ry(Z − a)2

(
1

12
− 1

22

)
. (3.54)

6Elements belonging to different columns of the periodic table of elements have different chemical
characters.

7International Union of Pure and Applied Chemistry, an international agency to standardize nomen-
clatures and symbols
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This law reminds of the equation for the energies of the Rydberg series. In this formula
Ry is the Rydberg constant, a is called the screening constant and has about the same
value for all elements; in case of neutral atoms a ≈ 1. Thus the Kα line energies lie on a
straight line as a function function of nuclear charge Z.

But what causes the clear separation of the Kα lines emitted by different ions of the same
iso-nuclear sequence? We have learned in section 3.2 that the level energies in a hydrogenic
ion and hence the spectral line energy, i.e., the difference between those levels, scale with
the square of the nuclear charge as the Coulomb potential deepens linearly with Z. Thus,
the higher the atomic number of an element is, the higher the energy of its spectral lines
will be. The mean field approximation has a similar effect. The more electrons shield
the nuclear charge, the lower is the effective Z in the Coulomb potential. But with a
shallower effective Coulomb potential due to a higher number of electrons and therewith
lower Zeff , also the transition energies decrease. The effect is large enough that in the Kα
spectrum the transitions of different ionic states separate. At least for the H- to O-like
ions it is possible to just count through the major peaks of the spectrum from higher to
lower energies in order to determine the charge of the emitting ion. However, starting with
F- and Ne-like ions, the separation of the lines according to their charge state becomes so
small, that usually (except maybe for extremely good instrumental resolution) these lines
blend so much into each other that they can not be distinguished anymore.

3.9 Radiative Transitions

Of the transitions between two energy levels E1 and E2 which are allowed according to
the selection rules, we are interested the most in radiative decay and photoabsorption.
Absorption lines in the continua of astrophysical sources, caused by photoabsorption, tell
us the composition of the environment close to said source. In contrast, photons emitted
by radiative decay are more are more easily produced in the laboratory. Because these
emission lines are usually created and observed under clean general conditions (controllable
or at least pretty well known), they can help to constrain the implications of and to
interpret the results obtained from astrophysical sources. There are three types of radiative
transitions: spontaneous and stimulated emission and stimulated absorption.
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3.9.1 Spontaneous Emission

Since nature generally seeks to obtain states of minimal energy, an excited atom, i.e., an
atom with higher energy than the ground state, has a certain probability to decay. An
isolated field-free atom with total angular momentum Ji is (2Ji+1)-fold degenerate in the
magnetic quantum number Mi. The number gi = 2Ji + 1 of these states with the same
energy Ei is called statistical weight. Often the index of g is omitted with the understanding
that then g is always the statistical weight of the initial level. The probability per unit
time to spontaneously decay from a specific of these gi states to any of the gj states with
energy Ej < Ei is given by the Einstein coefficient Aij = 1/τspon, where τspon is the decay
time. If level i can make a transition to several lower levels, then the decay time follows
the more general relation

1

τspon

=
∑

j

Aij. (3.55)

with τspon being the natural lifetime of state i. Consequently, the change of the number of
atoms in state i into state j can be expressed as

(
dNi

dt

)i→j
= −

(
dNj

dt

)i→j
= −Ni(t)Aij. (3.56)

So if no other processes of excitation or de-excitation are involved, the population of level
i suffers from exponential decay Ni(t) = Ni(t = 0) exp (−t/τspon) Cowan (1981). This
exponential decay with a finite natural lifetime introduces an uncertainty ∆t to the actual
lifetime τspon of an atom in state i. Due to the Heisenberg (1927) uncertainty principle

∆E ≈ ~
∆t

(3.57)

the spectral line of a transition has a natural line width contradicting the assumption that
each level of an atom has a perfectly definite energy value, i.e., is mono-chromatic. The
intensity distribution of these energies can be described with a Lorentzian (Lorentz, 1906)

I(E) =
1

π

Γ

∆E2 + Γ2
(3.58)

where Γ is the half-width at half maximum (HWHM) of the line. This broadening of the
spectral line, however, is usually very small and therefore negligible compared to other
broadening mechanisms like, e.g., Doppler broadening through the Maxwellian velocity
distribution (Maxwell, 1867) of the Brownian motion8 of the particle in the plasma. Ac-
cordingly, the natural line width can only be resolved in very high resolution experiments.

3.9.2 Induced/ Stimulated Emission and Absorption

In the presence of a radiation field, the decay can be sped up through the interaction
between the photons of the field and the atom. We assume an isotropic and unpolarized

8named after the Scottish botanist Robert Brown (1828) who discovered strange random motion of
pollen grains in a solution under the microscope. The forgotten but true discoverer of this stochastic
behavior, however, was the Dutch physician and botanist Jan Ingen-Housz (1785) who found irregular
movement of coal dust on the surface of alcohol. The history of the description of this kind of motion can
be traced even farther back to poems of Titus Lucretius Carus (60 BC) who wrote about the battle of
dust particles in the air.
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electromagnetic field with energy density (energy per unit volume) of ρ(E)dE in the energy
range dE. If this energy density is approximately constant over a range of several natural
line widths on either side of the line, the interaction of a photon with an atom in state i
results in a transition to the lower level j at the rate

(
dNi

dt

)i→j
= −

(
dNj

dt

)i→j
= −Ni(t)ρ(Eij)Bij. (3.59)

Bij is called the Einstein coefficient of stimulated emission.

It is as well possible that the interaction with the photon results in an induced or stimulated
transition from state j to a higher energetic state i via the absorption of the photon

(
dNj

dt

)j→i
= −

(
dNi

dt

)j→i
= −Nj(t)ρ(Eji)Bji. (3.60)

3.9.3 Relation between the Einstein Coefficients

Because of the principle of detailed balance, the rate of transitions between levels i and j
due to absorption has to be equal to the rate of transitions between the same levels due
to emission:

NjBjiρ(Eij) = NiAij +NiBijρ(Eij). (3.61)

This equation shows a linear relationship between the Einstein coefficients, introduced by
Einstein (1917), making them dependent of each other. In thermodynamic equilibrium at
temperature T , the energy density of the radiation field is given by Planck’s law (Planck,
1900)

ρ(E) =
8πE3

h2c3

1

eE/kT − 1
(3.62)

while the relative population of the different quantum states is described by the Maxwell-
Boltzmann law (Maxwell, 1867; Boltzmann, 1872)

Nj

Ni

=
gj
gi

e−
Ej−Ei
kT . (3.63)

Inserting equations 3.62 and 3.63 into equation 3.61 together with the argument that the
law of detailed balance has to hold for any temperature, leads to the equations:

Aij −
gj
gi

8πE3

h2c3
Bji = 0 and − Aij +

8πE3

h2c3
Bij = 0. (3.64)

Thus, the relations between the Einstein coefficients are

Aij =
8πE3

h2c3
Bij and gjBji = giBij. (3.65)

The assumption that the atoms are in equilibrium with the radiation field is merely valid,
which is indicated by the fact that spectroscopic sources usually show a line spectrum
rather than a black-body continuum. If the radiation density is low, stimulated emission
is negligible compared to spontaneous emission (Cowan, 1981). Independent of that, the
population of the lower levels may be much greater than the population of the higher levels
so that stimulated absorption becomes important. In laser experiments, however, these
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parameters can be adjusted through the experimental setup in such a way, that stimulated
emission becomes dominant, resulting in an effective line narrowing.

Since the Einstein coefficients are related to each other, it is sufficient to link only one
of them to quantum mechanics. The Einstein coefficient for spontaneous emission can be
written in term of the line strength Sji

Aij =
64π4

2h4c3

1

gi
E3
ijSij. (3.66)

The line strength is defined via the transition dipole matrix element (compare eq. 3.46)

M2
ij = Sijgi = e2|〈ψf |r|ψi〉|2 ∝ e2n4 a

2
0

Z2
(3.67)

where n2a0/Z is the radius of the electron orbit. The line strength is symmetrical in the
upper and lower state labels: Sij = Sji. With a proportionality of E3, the transition
probability Aij for spontaneous emission is strongly dependent of the transition energy.
So if there are two paths for the radiative decay, the one with the higher energy will always
be favored by the branching ratio (Dopita & Sutherland, 2003).

Hilborn (2002) published a nice overview over Einstein coefficients, gf -values and line
strengths. He discusses different conventions regarding their exact definitions, derive re-
lations of these parameters and warn about common pitfalls.

3.10 Collisional Excitation and Ionization

In section 3.8 we learned that Kα transitions are due to inner shell transitions. These
vacancies in the inner shell have to be produced somehow. Also we heard about the
differences in the energies of different ions of the same iso-nuclear sequence. Therefore, we
need a means to create various ionic stages of the same atom and that possibly provides
excited states of these ions at the same time. An electron beam ion trap (see section 4.1)
is capable of both. Through collisions with the highly energetic electrons of the beam
the injected gas gets constantly ionized and excited. Once it is excited and not touched
any more, it will decay radiatively at some point. Because of the collisions with electrons,
these processes are also often referred to as electron impact excitation and ionization. But
how does collisional ionization and excitation work? Dopita & Sutherland (2003) can help
us with the answer to that question.

3.10.1 Collisional Excitation

A factor that is most certainly very important for these mechanisms is the cross section of
collisions between the atoms and the electrons. To excite an electron from the inner shell,
the atom needs to be supplied with energies around a few keV, depending on element and
numbers of electrons. The cross section is thus a strong function of the impact energy
and does not make for a good parameter to describe states of atoms. Therefore, the cross
section σij(E) is written in terms of the collision strength Ωij to separate constant atomic
characteristics, which can easily be collected in data tables, from energy dependencies:

σij(E) =
h2

8πmeE

Ωij

gi
. (3.68)
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Here, me and E are electron mass and energy and gi is the statistical weight of the
ground state. The collision strength can be derived from quantum mechanics and has
the advantage of being symmetric between lower and upper states: Ωij = Ωji. Again
we assume thermal equilibrium, which gives us the ratio of the population densities as
stated by the Maxwell-Boltzmann equation (Eq. 3.63) at electron temperature T . If the
energy of the electrons follows the Maxwell-Boltzmann energy distribution (Maxwell, 1867;
Boltzmann, 1872)

f(E)dE =

√
4

π(kT )3

√
E exp (− E

kT
)dE, (3.69)

the collisional excitation rate of the upper level per unit volume can be computed to

Rij = neNi

∫ ∞

Eij

σij(E) · E · f(E)dE

= neNi

(
2π~4

kme

)1/2

T−1/2

(
Ωij

gi

)
exp (−Eij

kT
)

= neNiαij (3.70)

in units of cm−3 s−1 and the collisional de-excitation rate is

Rji = neNj

∫ ∞

0

σji(E) · E · f(E)dE

= neNj

(
2π~4

kme

)1/2

T−1/2

(
Ωij

gi

)

= neNjαji (3.71)

where ne is the density of the electron gas and αij and αji are the collisional excitation and

de-excitation coefficients in units of cm3 s−1. Due to the Boltzmann factor exp (−Eij
kT

) and
the different statistical weights, the α’s are not symmetric in the upper and lower levels.
Applying the principle of detailed balance to these rates yields a simple relation between
the collision coefficients

Nj

Ni

=
αij
αji

=

(
Ωij

gi

)(
Ωji

gj

)
exp (−Eij

kT
). (3.72)

A comparison with equation 3.63 prooves the symmetry of the Ω’s.

3.10.2 Collisional Ionization

Collisional ionization can be considered sort of the limit of collisional excitation. An
electron is excited to the n → ∞ shell, i.e., the continuum where it is unbound from the
core potential of the atom, if the energy supplied through the collision is larger than the
ionization energy ∆EA,i of the atom:

Ai+ + e− → A(i+1)+ + 2e− −∆EA,i. (3.73)

Since the required ionization energy is subtracted from the colliding electron, collisional
ionization effectively cools the electron gas. For supplied energies greater than the ioniza-
tion potential, the ionization can take place to an excited level of the next ionic state. So
the only difference between collisional ionization and excitation is that the former occurs
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to a continuum of levels above the ionization limit while the latter occurs only to a single
level. The collisional ionization rate is then

RA,i
coll = nenA,iα

A,i
coll = nenA,i

∫ ∞

I

σcoll(E) · E · F (E)dE (3.74)

where f(E)dE is the electron energy distribution and I the ionization limit but now nA,i
is the number density of the ions instead of just one level. Due to the higher complexity
of the ionization process, this function is usually not solved analytically but rather fitted
with a five-parameter function for each ionization channel.

3.10.3 Photoionization

There is nothing like an electron beam around the binary system Cyg X-1. Instead the gas
contained in this system is ionized by the strong X-ray radiation emitted by the accretion
onto black hole. The ionization of an atomic species through the absorption of the photon
is called photoionization:

Ai + hν → A(i+1) + e− + ∆E. (3.75)

As for collisional ionization, the absorption of a photon can, depending on the photon
energy, lead to the ground state or an excited state of the next ionic stage. For high
photon energies, photoionization can lead to the removal of an inner-shell electron, which
definitely results in an excited state of the next ion. Cascades back to the ground state
then partially are seen as Kα emission. A photon of this cascade, however, can also be
absorbed by an outer-shell electron before it can leave the ion. If it bears enough energy to
overcome the ionization energy, the absorbing electron will be excited to the continuum.
This process is known as radiationless autoionization.

3.11 Line Intensities

Generally, in equilibrium it can be assumed that all losses in the population of a certain
energy level of an ion should be outweighed by the gain in population caused by transitions
from other levels. This steady state model is commonly refered to as the principle of
detailed balance9, where the rate equations can be written as ni

∑
j Pij =

∑
j njPji. Here,

ni is the relative abundance of particles occupying energy level i, while Pij is the probability
for this particle to make a transition from level i to level j. Using this assumption, the
line intensity for every radiative transition can be estimated. The intensity of a line is
defined as

Iν =
1

4π
nuνulAul, (3.76)

where u denotes upper and l lower levels. Obviously, besides the (known) properties of
transition frequency νul and radiative transition rate Aul, the relative occupation number
nu of the initial energy level has to be acquainted. The latter can be obtained by solving
the rate equations. This set of linear equations is overdetermined since the single equations
are not linearly independent of each other. Therefore, the additional constraint of particle
number conservation

N∑

i

ni = 1 (3.77)

9explicitely introduced for the first time by Boltzmann (1872) for collisions
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has to be accounted for. To ease the process of solving the set of linear equations, it can
be re-written to a matrix equation of the form

~nTA = ~eTN (3.78)

where ~n is the vector of occupation numbers, A is the matrix comprehending the transition
probabilities and ~eN is the N th unit vector. Solving this matrix equation is as easy as ma-
trix inversion can be, analytically and numerically. The solution of the relative occupation
numbers then is simply the last row of the inverted matrix.
The exact expression of the transition probabilities Pij strongly depends on the processes
taken into account. A very simple version of the transition probabilities, often used in
plasma diagnostics of interstellar medium, planetary nebulae, etc., only considers sponta-
neous and (collisionally) stimulated emission (for i > j) and collisional excitation (i < j;
Dopita & Sutherland, 2003). Using the collisional (de-)excitation rates deduced in sec-
tion 3.10 and with spontaneous emission only being possible through transitions from
upper to lower levels (for energetic reasons), the rates can in this case be written as
(Drechsel & Przybilla, 2009):

i > j : Pij = Aij +

(
2π~4

kBm3
e

)1/2
Ne√
Te

· Ωi,j

gi
(3.79)

i < j : Pij =

(
2π~4

kBm3
e

)1/2
Ne√
Te

· Ωj,i

gi
· exp

(
−(Ej − Ei)

kBTe

)
. (3.80)

Here, Aij denotes the Einstein A coefficients for spontaneous emission, Ωij the collison
strength, gi the statistical weight and Ei the level energy. In astrophysics and in the
above equations an energy distribution according to Maxwell-Boltzmann is assumed, while
in the laboratory other distributions are possible. In EBIT, for example, the beam energy
is better described by a Gaussian distribution (Gauß, 1809). The corresponding matrix
equation10 then looks like

(n1, n2, · · · , nN−1, nN )




−∑j 6=1 P1j P12 · · · P1,N−1 1

P21 −∑j 6=2 P2j
... 1

...
. . .

... 1
... −∑j 6=N−1 PN−1,j 1

PN1 · · · · · · PN,N−1 1




= (0, · · · , 0︸ ︷︷ ︸
N−1

, 1).

(3.81)

In this simple case where only transitions inbetween levels of the same ion are considered,
the diagonal matrix elements lists the loss terms of the energy levels, while the lower
triangular matrix contains the gain from higher energy levels (de-excitation) and the upper
triangular matrix resembles the gain from lower levels (excitation).

10In this matrix equation the rather unconventional row vectors are used for numerical reasons. To
solve this equation analytically the inverse matrix has to be multiplied to both sides of the equation from
the right hand side. Because only one entry of the vector on the right hand side is different from zero,
the solution of the abundances are just the last row of the inverse matrix. In Fortran the most efficient
way to read out the elements of an array is to read them row by row. Most other programming languages
are built such that the most efficient read-out mode is column by column (priv. comm. with J.Wilms).
For these languages the matrix equation can easily be re-written in terms of column vectors such that
the solution is hidden in the last column of the inverse matrix. The conversion can be done easily by
transposing the whole equation, i.e., nP = s→ PTnT = sT where nT is the column vector of the relative
abundances and PT is the transposed probability matrix.
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This example only accounts for excitation in one sort of ions. The expression for the
transition probabilities, however, can become way more complex; especially if in addition
to the excitation processes ionization mechanisms are introduced, creating a link between
energy levels of different ionization states of the same atom. A more general description of
transition probabilities ist given by Bautista & Kallman (2001), who include all possible
types of transitions in their rate equations. In their notation, subindices also denote
transitions between energy levels of the same ion. Superindices, in contrast, indicate
transitions between ionic states.

n0
i

( ∑

j 6=i
Rij

︸ ︷︷ ︸
losses to levels

in same ion

+
∑

q>0
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(3.82)

The left hand side of this equation describes all losses from level i in ionization state
0 to levels of the same ion as well as to other ionization states. The right hand side
is the sum of all processes populating level i in ion 0. Transitions in the same ion,
Rij = neq

e
ij + npq

p

ij + Aij + UνBij, are covered by collisional (de-)excitation induced by
collisions with electrons and protons (electron/proton collisional excitation rate coefficient

q
e/p
ij ), spontaneous radiative decay (Aij) and transitions stimulated by a photon field with

absorption radiation density Uν (stimualted transition coefficient Bij). Photoionization
processes are indicated by Γk→lij , which is the rate with wihich level i in ion k ionizes to
level j in ion l. If there is only one subindex, ionization into any level of ion l is included
implicitely, i. e. Γk→li =

∑
j Γk→lij . In the same manner, Qk→l

ij represents the collisional

ionization coefficient. Recombination into ion k is given by αk. This coefficient can in-
clude radiative and dielectronic electron-ion recombination, three-body-recombination and
stimulated recombination.
The translation of the above system of linear equations into a matrix equation can be
found in appendix B. Again, to solve this equation, one column of the matrix has to be
substituted by the condition of charge conservation

∑

k

Nk∑

i

nki = 1. (3.83)

Fortunately, the rate equations can often be simplified by applying a few assumptions. For
example, ionization usually only connects ionization states directly adjacent to each other,
i.e., there is only one electron removed at a time. Transitions between non-neighboring
ionic stages can be described by a sequence of processes, e.g., inner-shell ionization is
likely followed by Auger-ionization, and accordingly have small transition rates. The same
holds true for the inverse process of recombination: an ion only takes in one electron at
a time. Also, most ionization and recombination processes happen to the ground state of
the neighboring charge state. Therefore, rates to other levels are basically zero in large
portions of the transition probability matrix. Some knowledge about the conditions in
the observed plasma can reduce the number of the non-zero matrix elements and their
components even further. Sources like Cyg X-1 are mainly driven by photo-ionization and
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-excitation. In contrast, the photon field does not play a role in sources like an EBIT (see
Sec. 4.1), where ions are created and excited through the collision of the injected gas with
the electrons of the electron beam but where no powerful radiation source like a massive
star or an X-ray laser is present. Consequently, photo-ionization can be neglected in this
case. It is nevertheless a good idea to handle the huge amount of energy levels present in
the ion mixture of the plasma by solving the system of rate equations numerically.

3.12 Atomic Codes

To be able to derive (at least the relative) intensities of radiative transitions, which can be
used to simulate the spectrum, the atomic physics parameters describing the properties
of the ions have to be known first. Since a lot of the resulting spectral lines vastly blend
into each other and are therefore never to be resolved experimentally, these parameters
are better to be calculated numerically. There are many codes available for this purpose.
They can be devided into two categories: there are codes which really calculate the atomic
physics data like the energy levels and all kinds of ionization, recombination and (de-
)excitation cross sections and transition rates. And then there are codes that use these
databases to calculate properties of plasmas under certain conditions and simulate the
spectra emitted by them.

Only a small, rather incomplete overview over the variaty of available codes can be given
here. superstructure (Eissner et al., 1974) is one of the codes that is only capable
of calculating atomic structure and bound state problems (term energies, intermediate
coupling energy levels, term-coupling coefficients, permitted and forbiddan radiative tran-
sition probabilities and cascade coefficients). It uses the ansatz of relativistic corrections.
The mchf code of Froese Fischer (2000) also applies relativistic corrections to derive en-
ergy levels, transitions between LS and LSJ coupling and hyperfine interactions. A fully
relativistic approach but mainly for the calculation of energy levels is prepared by the
mcdf code of Grant et al. (1980). In order to avoid inconsistencies between the treatment
of continuum and bound states and to ease the handling of the programs also for peo-
ple other than its author, also some integrated packages have been written. There is, for
example, the SZ code of Sampson et al. (1989) and Zhang et al. (1989) based on a fully rel-
ativistic ansatz. autostructure11 evolved from and uses superstructure, adding the
possibility to comput autoionization rates, photo-ionization cross sections (Badnell, 1986,
1997) and electron impact excitation (Badnell, 2011). The Hebrew University Lawrence
Livermore Atomic Code (HULLAC; Bar-Shalom et al., 2001) is a package that provides a
coherent set of programs for relativistic quantum mechanical calculations of atomic struc-
ture and collisional and radiative atomic processes and cross sections. It even comes with a
routine to derive line intensities in a plasma, but is unfortunately not publically available.
This flaw is overcome by the Flexible Atomic Code (FAC Gu, 2004, see section 3.12.3 for
details).

All of the codes mentioned above have in common that they usually produce very good
results for H- and He-like systems. The high accuracy of these lines and their good
agreement with experimental data is due to the simplicity of their systems. The atomic
nucleus can be considered a single particle (with increasing mass for increasing Z), every
electron adding one more body to the equation. A two-body problem can be solved
very well, a three-body-problem is still easy enough, but with every additional body the

11available online at http://amdpp.phys.strath.ac.uk/autos/



56 Chapter 3. X-Ray Spectra

inaccuracy of the calculated lines increases more and more. Depending on the goal to be
achieved with the code, the authors of the codes use different theoretical and numerical
approaches to solve the many-body-problem. An additional factor to be considered is
the regime the code is written for: does LS-coupling still hold or is jj-coupling already
advisable?

3.12.1 Calculation of House (1969)

In this work, two sets of theoretical predicitons for line energies are compared to the
experimental data. One ist the work of Palmeri et al. (2008), the other one is a calculation
carried out with FAC. A third one by House (1969), although cited in Fig. 2.8, is omitted.
At his time, Kα-type X-ray transitions other than the ”normal” Kα transition (transitions
to the K-shell in singly ionized material) had just recently been observed in solar X-
ray spectra which had been taken during rocket observations carried out by the Naval
Research Laboratory. It was theorized that inner-shell ionization of an already ionized
state leads to similar transitions as the normal Kα line, but shifted to higher energies
due to the reduced shielding of the X-ray transition. Following the lack of laboratory
measurements of these transitions, House (1969) utilized the Hartree-Fock approach in
the LS-coupling regime to provide the community with calculations of the Kα wavelength
of singly ionized to He-like carbon through copper. Although he stated that the influence
of angular momentum coupling becomes important in incomplete shells, term structure
was only treated in elements with an open n = 2 shell. For higher Z elements, i.e., Na-Co,
the multiplet structure was completely neglected as a deviation from LS-coupling would be
expected anyway. Additionally, for these elements, the calculations are arbitrarily forced
into agreement with their corresponding observed normal Kα transitions by shifting the
whole isonuclear sequence by this difference in wavelength. For some experimental data
only measurements carried out with solid material were available, which slightly differ
from wavelength in gases. As can be seen in Fig. 2.8 and Hanke (2011), the precision of
these results and, in view of laboratory measurements, their resolution are not sufficient
for our purposes.

3.12.2 Calculation of Palmeri et al. (2008)

Palmeri et al. (2008) compare different versions of their own calculations of the Ne, Mg,
Si, S, Ar, and Ca isonuclear sequences with various other published data tables. First,
they study the impact of the core relaxation effects in the radiative dexay process by
calculating radiative transitions with autostructure, once with all considered electron
configurations having a common basis of orthogonal orbitals and antoher time optimizing
the energy of each configuration separately, which leads to a basis of non-orthogonal
orbitals. A comparison of the obtained f -values with the standard reference table of
Drake (1988) for the He-like isonuclear sequence leads to the conclusion that accounting
for core relaxation effects may not necessarily improve the radiative data. The atomic data
tables to be found in the electronic version of the Astrophysical Journal Supplement12,
however, are created using the HFR code which also relies on bases of non-orthogonal
orbits and includes relativistic corrections. The tables given are split into two parts: one
lists the computed energy levels compared to the spectroscopic energy available in the

12http://iopscience.iop.org/0067-0049/177/1/408/fulltext
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NIST Atomic Spectra Database13, the corresponding radiative width and the Auger width
and fluroescence yield where applicable. The second table provides a list of transitions,
identified with the indices of the upper and lower energy levels, its wavelength, A-value and
gf -value. Usually, the difference in wavelength between experiment and theory increases
with increasing number of electrons along an isoelectronic sequence. For first-row ions
(ions with 3 to 9 electrons) this trend and a comparison between theory and experiment
can be used to fine-tune computed data with empirical corrections. Since there are no
measurements for second-row ions available, this approach is not feasible and, therefore,
their results remain uncorrected. Palmeri et al. (2008)’s investigation of the accuracy of
the published tables suggests an agreement of the line energies of better than 2 eV for ions
with up to four electrons. The presented A-values and Auger width greater than 1013 s−1

are within 15% and 20%, respectively. Palmeri et al. (2008) also is used as a reference for
radiative and Auger width for photoionization cross section calculations in the XSTAR
code (Bautista & Kallman, 2001).

3.12.3 Calculations with FAC

One of the codes available for calculations of atomic physics data is the Flexible Atomic
Code (FAC14) by Ming Feng Gu (2004). While most programms are mainly concerned with
the atomic structure and bound-bound processes, i.e., no ionization processes, FAC is a
compound package that provides functions to calculate the atomic structure, bound-bound
as well as bound-free processes, and has subroutines to estimate the line intensities for
given electron beam properties or plasma temperatures and even calculates the polarization
of lines. Compared to, for example, the HULLAC package (Bar-Shalom et al., 2001) FAC
has the major advantage that it is freely accessible for everyone. FAC is distributed
with a manual and several unpublished papers to discribe the theoretical background and
numerical techniques and compares a few example calculations with other codes.
FAC is based on the fully relativistic ansatz via the Dirac equation. The assumed Hamil-
tonian of the system in atomic units15,

Ĥ =
N∑

i=1

ĤD(i) +
N∑

i<j

1

rij
, (3.84)

contains all single-electron Dirac Hamiltonians ĤD for the potential due to the nuclear
charge plus the interactions between the electrons. The coupling of the angular momenta
of successive shell is handled in the standard jj-coupling regime. The atomic state functions
ψ are approximated by mixing the basis states Φν with same symmetries

ψ =
∑

ν

bνΦν . (3.85)

The bν are the mixing coefficients obtained from diagonalizing the total Hamiltonian. The
central potential due to the nuclear charge VN(r) is assumed to be

VN(r) =





Z
2

(
r
RN

)[
3−

(
r
RN

)2
]

for r ≤ RN

Z for r < RN

(3.86)

13http://physics.nist.gov/asd
14http://sprg.ssl.berkeley.edu/~mfgu/fac/
151 a.u. = 2 Ry



58 Chapter 3. X-Ray Spectra

with the statistical model radius of the nucleusRN which is proportional to the atomic mass
as RN ∝ A1/3. The contribution of electron-electron interaction to the central potential is
a rather complicated expression which depends on the sought radial orbitals. Therefore,
a self consistent iteration is needed to solve the Dirac equation of the system. To derive
the potential, in each iteration the orbitals from thr previous step are used such that
the eigenvalue problem reduces to one with a known potential. The Dirac equation is
converted into a Schrödinger-like equation and the radial distance r is substituted by a
function t(r) which allows to use a uniform grid in the new variable t for better numerical
handling during the calculations. There are different candidates for such a function. The
MCHF code of Froese Fischer (2000) applies a logarithmic transformation t(r) ∝ ln(r),
which is not suitable for highly excited atoms and ionization processes. ATOM (Amusia
et al., 1998) uses a hybrid form t(r) = c1r + c2 ln(r) that – for the right choice of c1 and
c2 – is able to cope with the calculation of highly excited orbitals and continua below a
certain limit. To be able to also take high energies into account, FAC follows the path of
HULLAC (Bar-Shalom et al., 2001) which employs yet another method. The oscillation
period of the wavefunction can be shown to be proportional to

√
r for large r. So in order

for one oscillation period to contain approximately the same number of grid points at
large distances, the transformation t(r) = c1

√
r + c2 ln(r) is applied, which allows a given

number of grid points to cover a larger radial distance than the linear form.

To get as accurate results as possible for the atomic structure, the interaction between
different configurations has to be taken into account (multiconfiguration approach). The
number of these interacting configurations sometimes can become very large, resulting
in huge dimensions of the Hamiltonian to be diagonalized. The larger the Hamiltonian,
the more expensive in CPU time and memory the calculation becomes. Since often the
focus of interest lies in a small subset of energy levels from a large configuration space,
most of the configuration levels are only included to account for the mixing to the desired
levels. Therefore, the configuration space is subdivided into the main group, which gives
a good zeroth order approximation of the desired energy levels, and a perturbing group
with only weak interaction with the main group. Then only interactions of the main
group with itself and the perturbing group is considered, while all interactions within the
perturbing group are neglected. For perturbing groups much larger than the main group,
this approximation eases the computation a lot. The eigenvalues and eigenvectors of the
simplified Hamiltonian are then determined iteratively.

Once the atomic structure is known, radiative transition rates can be calculated. While
th user is free to chose according to which multipoles the transitions should be calculated,
the code does not take into account interference between different multipoles. Staring
from the atomic structure also all other kinds of excitation and ionization processes can
be calculated. Testing of the code was done by its author Gu (2004) who carried out calcu-
lations with his code and other available packages each for the same set of configurations.
Comparisons between the results of the different codes and some experimental results as
well lead him to the conclusion that in ions other than H-like the computed energy levels
are accurate up to a few eV or 10-30 Å at ∼ 10 Å. Radiative transitions rates and cross
sections are accurate to ∼ 10 − 20%. Near-neutral ions or atoms may have even larger
errors (cf. FAC manual).

For the simulation of the silicon and sulfur Kα spectra, the atomic structure and radiative
transitions are calculated with FAC. To get more accurate estimations for the single level
populations not only interactions between the first and second shells are taken into account
but also interactions with ∆n = 0. Since in an EBIT the production of ions and excited



3.12. Atomic Codes 59

2
×

1
0

1
3

4
×

1
0

1
3

6
×

1
0

1
3

E
in

s
te

in
 A

 [
1

/s
]

FAC

1740 1760 1780 1800 1820 1840 1860

2
×

1
0

1
3

4
×

1
0

1
3

6
×

1
0

1
3

E
in

s
te

in
 A

 [
1

/s
]

Energy [eV]

Palmeri (2008)

Figure 3.6: A crude comparison between the atomic data of Si presented by Palmeri et al.

(2008) (lower panel) and the calculation with FAC (upper panel) for He- through Ne-like ions.

Different colors represent different ionization states. The color code is consistent throughout this

work (see table 3.2.

Table 3.2: Whenever different ionization states are color coded in this work, the color scheme

listed in this table is used.

Ionic state Ne Color Ionic state Ne Color

H-like 1 red C-like 6 orange
He-like 2 dark green N-like 7 green
Li-like 3 dark blue O-like 8 blue
Be-like 4 light blue F-like 9 dark purple
B-like 5 pink Ne-like 10 light gray

states is dominated by electron-ion and ion-ion collsions, also collisional excitation and
ionization rates are computed. In addition, subsequent ionization of excited levels via
autoionization processes is tabulated for completeness reasons. Only photoionization and
its inverse process, radiative recombination, are discarded because of the lack of a serious
photon field in EBIT. FAC is also capable of calculating the effects of external electric
and magnetic fields (Zeeman, Paschen-Back, Stark effects). Since there are strong electric
and magnetic fields employed in an EBIT, one has to think about including these terms.
Nevertheless, as shown in section 3.3, the level splitting due to these effects is in the order
of less than 1 meV, i.e., much smaller than the resolution of our measurements around
2 keV. Therefore, external fields are omitted in this calculation.
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3.12.4 FAC vs. Palmeri et al. (2008)

A qualitative comparison between the results obtained with FAC and the lines published
by Palmeri et al. (2008) is displayed in Fig. 3.6. Different ionization stages are associated
with different colors to be able to distinguish them by eye. The color code can be looked
up in table 3.2 and is consistently applied throughout this work whenever these ions
are plotted. As expected do the He-like lines (dark green) agree very well between the
two calculations. For lower ionization states only the general distribution of the lines
agrees anymore. Groups of lines can still be percieved to correspond to each other. But
the separation of certain line features has obvious differences. For instance, there are
two O-like lines (blue) around 1750 eV for which the ratio of the transition probabilities
is approximately the same in both calculations. The separation of their line energies,
however, is about twice as large in FAC as in Palmeri et al. (2008). There is also one
outstanding aspect of the Palmeri et al. (2008) results that arises suspicion: the two
(purple) F-like spectral lines have distinctly lower energies than the (gray) Ne-like lines
although the Ne-like iso-electronic sequence has an electron more than the F-like ions.
This inconsistency can probably be ascribed to the fact that the F-like lines are shifted by
an empirical value according to measurements after the calculation was performed while
for Ne-like lines no such shift was applied due to the lack of measurements.
Later when the laboratory measurements are compared to theoretical calculations (section
4.7), the identification is mainly done via the spectra simulated with FAC. Nevertheless,
the results of Palmeri et al. (2008) shall be incorporated into the table as well. Therefore,
the LS-coupling energy levels corresponding to the chosen jj-coupling energy levels have
to be found. Because of the inadequateness of the analytical approach descriped in section
3.6.4, a rather numerical method is chosen to reach this goal. According to theory both
calculations should result in the same number of levels. These levels are sorted after
increasing energy for both calculations and then matched to each other via their level ID.
After the energy sorting special attention is payed to the total angular momentum J since
it is the only good quantum number and therefore should be the same in both notations.
If the J value of supposedly corrsponding energy levels differ from each other, a closer look
is taken at the energies. Usually in these cases the energy difference between succeeding
levels is in the order of or smaller than the energy difference between the FAC and Palmeri
et al. (2008) results. Then these levels are switched with each other such that they have
the same total angular momentum as their corresponding FAC levels.
This approach shall be demonstrated on the example of Li-like Si. Table 3.3 lists the
sorted energy levels for both, FAC and Palmeri et al. (2008), Figure 3.7 visualizes their
total angular momentum. The energy difference between the levels of different calculation
methods are within their stated accuracy of at least 2 eV. Obviously, the levels with the
IDs 14 and 15 are mismatched. They belong to the doublet 2D with a fine structure
splitting of roughly 0.1 eV. This difference is small compared to the ∼ 0.4 eV between
FAC and Palmeri. It is therefore perfectly valid to exchange those two levels; i.e., FAC
level 14 corresponds to Palermi level 15 and the other way round.

3.12.5 Spectra Simulated with FAC

The atomic data tables compiled with FAC are then finally used in a second step to create
theoretical spectra of the desired Kα lines. Therefore, the FAC module crm is employed.
It uses an iterative linear equation solver to invert the level population equations explained
in section 3.11 to derive a collisional radiative spectral model for optically thin plasmas.
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Table 3.3: Comparison of the FAC and Palmeri et al. (2008) energy levels of Li-like Si. With

the exception of levels 14 and 15 which have to be switched, this table can be used to match the

LS- and jj-coupling notations. The level IDs are the same as in Fig. 3.7.

Level FAC / jj-coupling Palmeri / LS-coupling
ID label 2J E (eV) label 2J E (eV)

0 1s2 2s1/2 1 0.0000 1s22s 2S1/2 1 0.0000
1 1s2 2p1/2 1 24.2052 1s22p 2Po

1/2 1 23.8072

2 1s2 2p3/2 3 25.1950 1s22p 2Po
3/2 3 24.8172

3 1s1/2 2s2 1 1819.3324 1s2s2 2S1/2 1 1819.7636
4 ((1s1/2 2s1/2)1 2p1/2)1/2 1 1825.5664 1s(2S) 2s2p(3Po) 4Po

1/2 1 1825.6379

5 ((1s1/2 2s1/2)1 2p1/2)3/2 3 1825.8421 1s(2S) 2s2p(3Po) 4Po
3/2 3 1826.0523

6 ((1s1/2 2s1/2)1 2p3/2)5/2 5 1826.5196 1s(2S) 2s2p(3Po) 4Po
5/2 5 1826.7783

7 ((1s1/2 2s1/2)0 2p1/2)1/2 1 1844.2234 1s(2S) 2s2p(3Po) 2Po
1/2 1 1844.7912

8 ((1s1/2 2s1/2)0 2p3/2)3/2 3 1844.7978 1s(2S) 2s2p(3Po) 2Po
3/2 3 1845.3252

9 1s1/2 2p6 1 1851.4494 1s(2S) 2p2(3P) 4P1/2 1 1851.1741
10 ((1s1/2 2p1/2)0 2p3/2)3/2 3 1851.8449 1s(2S) 2p2(3P) 4P3/2 3 1851.6101

11 (1s1/2 (2p2
3/2)2)5/2 5 1852.3764 1s(2S) 2p2(3P) 4P5/2 5 1852.2880

12 ((1s1/2 2s1/2)1 2p3/2)1/2 1 1853.8790 1s(2S) 2s2p(1Po) 2Po
1/2 1 1853.8947

13 ((1s1/2 2s1/2)0 2p3/2)3/2 3 1854.0537 1s(2S) 2s2p(1Po) 2Po
3/2 3 1854.2217

14 ((1s1/2 2p1/2)1 2p3/2)5/2 5 1864.3231 1s(2S) 2p2(1D) 2D3/2 3 1863.9732

15 ((1s1/2 2p1/2)0 2p3/2)3/2 3 1864.4458 1s(2S) 2p2(1D) 2D5/2 5 1864.0761

16 ((1s1/2 2p1/2)1 2p3/2)1/2 1 1867.0930 1s(2S) 2p2(3P) 2P1/2 1 1866.9400

17 (1s1/2 (2p2
3/2)4)3/2 3 1868.0490 1s(2S) 2p2(3P) 2P3/2 3 1867.8849

18 (1s1/2 (2p2
3/2)0)1/2 1 1881.2675 1s(2S) 2p2(1S) 2S1/2 1 1881.2095
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Figure 3.8: FAC simulation of Si Kα spectrum. Different colors represent different ionization
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Since the populations of the various ions in EBIT are connected to each other via several
ionization and recombination processes, the intensities of the levels in all ions are estimated
at once.

To be able to fill the matrix given through the rate equations (eq. 3.82), FAC needs to
know which processes to take into account. The most important process to be listed is
radiative de-excitation as that is where our spectrum comes from. The inverse process
of photoionization, in contrast, is discarded for the same reason as the photoionization
parameters are not computed in the first step: there is no sufficient photon field around.
Because of the constant collisions of the plasma with the electron beam, collisional excita-
tion and de-excitation are both taken into account. To reproduce the high intensity of the
usually forbidden line z (see section 4.5), which arises from inner-shell ionization of Li-like
ions, collisional ionization is included. The inverse process of three-body recombination is
not yet supported by the routine. For the sake of completeness then also autoionization
and dielectronic recombination are included.

In order to fill the remaining parameters of the formulas, the plasma and beam properties
have to be given. The calculations are performed with the same beam energy as was used
during the measurements. The beam energy is assumed to follow a Gaussian distribution
with an energy spread of around 40 eV and an electron density of 1012 cm−3. To adjust
the relative line intensities between differen ionization states, an initial estimate for the
charge balance in the plasma has to be provided. Unfortunately, the relative abundances
of the ions in the trap can not be estimated very well. The simulation of the spectrum
produced in the trap is therefore not self-consistent, which can lead to some unwelcome
features in the spectrum.

Fig. 3.8 and 3.9 illustrate the resulting FAC simulation for silicon and sulfur, respectively,
considering the presence of H- through Ne-like ions. The line centers of transitions calcu-
lated by FAC are convolved with a Gaussian line with a FWHM close to the resolution
of the calorimeter used for the measurements (see sections 4.3 and 4.5.1). The correct
normalization of these Gaussians is omitted for illustration reasons. The introduced error,
however, has no influence on the depicted intensity ratios as the same FWHM is used for
all lines, hence, the missing normalization factor would also be the same for all lines.



Chapter 4

Laboratory Measurements

Scrooge McDuck: What did you
do??

Gyro Gearloose: Well, you did say
to make it as real as it can be, so I

did!

Duck Tales

4.1 Electron Beam Ion Trap

In the mid-80s Mort Levine (Lawrence Berkeley Laboratory [LBL]) and Ross Marrs
(Lawrence Livermore National Laboratory [LLNL]) investigated ways to produce highly
charged ions and maintain a certain charge balance as long as possible, as the electron
beam ion source (EBIS) was not very successful with it. The first electron beam ion trap
(EBIT; Levine et al., 1988; Marrs et al., 1988; Levine et al., 1989) was born and started
operation in October 1986. First it was not clear whether it would work or not since there
were theoretical predictions about a maximally reachable ionization state of qmax ≈ +50
(Levine et al., 1988). But cooling mechanisms in EBIT lead to amazing results and so
presently EBITs are the most efficient way of controlled ion production, even for very high
states of ionization.

Basically, an EBIT consists of three main parts: the electron gun to produce the beam, the
trapping region, and a collector assembly to dump the beam (see Section 4.1). The electron
gun is a commercial Pierce-type gun (Pierce & Millburn, 1952). A Pierce-type electron gun
has three cathodes coated with an electron emissive layer. The electron emissive coating
is a material, in this case tungsten and bariumoxide, which has a low work function. The
cathodes are heated radiatively thus the work function is overcome, electrons are boiled off
and are emitted. This process is called thermionic emission and initially will leave positive
charges behind in the emitting region. The ‘missing’ negative charge can be refilled by
connecting the cathodes to a power supply and, therefore, neutralize the emitter and reset
it to the state it was before the thermionic emission.

To focus the resulting electron beam, the cathodes are shaped conically. Further focusing is
provided by a focus electrode. An anode with a hole in the middle to allow the beam to pass
is used to accelerate the electrons. Afterwards the beam is guided through a set of three
cylindrical electrodes, the drift tubes. The base potential of the drift tubes determines the
energy of the electron beam. Around the drift tubes there is a pair of superconducting
Helmholtz coils situated. The coils produce a strong magnetic field of 3 T, which is uniform
to 0.02 % and whose field lines are straight within 0.3 mrad in the trap region and is used to
compress the electron beam (Levine et al., 1988). A liquid helium bath, which is shielded
by liquid nitrogen from thermal radiation from the outside, cools the coils to ∼ 4.2 K. To
enable the beam to originate in a field free environment, there is an additional bucking coil
installed around the electron gun whose magnetic field compensates for the field coming
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Figure 4.1: Sketch of an Electron Beam Ion Trap setup. Courtesy of G. V. Brown.

from the Helmholtz coils. Additionally, the gun chamber is under ultra high vacuum at
room temperature to save the emitted electrons from scattering with neutral gas.
While the space charge potential of the electron beam confines the ions radially, the drift
tube assembly can be used as an axial trap (Fig. 4.2). The space charge potential can be
estimated as

V ≈ 0.5(1− f)I/
√
E (keV) (4.1)

with beam current, I, beam energy, E, and the fraction, f , of the space charge neutralized
by the opposite charge of the ions (Beiersdorfer, 1997). The drift tube potentials are set
separately for every drift tube, top, middle and bottom, in the way that the top and
bottom electrodes are on a positive potential compared to the middle drift tube, creating
a potential well for the ions (Fig. 4.2). The depth of this well as it is experienced by the
ions, however, also depends on the charge state of the ions. Low-charge ions will see a
shallower trap than highly charged ions and, therefore, will be able to escape the trap
at a much lower temperature than higher ionization states. It can be shown that ion-ion
collision is much more frequent than ion-electron collision (Spitzer, 1962). Consequently,
elastic collisions between the ions heat the plasma. Because of conservation of momentum,
heavier ions (higher nuclear charge) tend to kick lighter material out of the trap.
Once the electron beam has passed the trap, i.e., the drift tubes, it is no longer needed
and can be disposed of. To avoid dumping a highly focused high energy electron beam
directly onto the collector electrodes and, therefore, to extend the lifetime of the hardware,
another set of magnets, the collector magnet, is installed. Its magnetic field defocuses the
beam by increasing its cross section by a factor of 900. The collector electrodes are made
of copper and are operated at a relatively low voltage to minimize the deposited energy.
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Figure 4.2: Drift tube setup and trapping potentials of EBIT (https://ebit.llnl.gov/).

They are cooled to 77 K with liquid nitrogen to suppress outgassing from ions burned out
of the electrodes by the electron beam, which could pollute the plasma in the trap region.
The distance between electron gun and collector is about 50 cm, the length of the ion trap
about 2 cm. To avoid charge exchange reactions with neutral gas in the trap, the whole
apparatus is contained in a vacuum vessel with ultra high vacuum (∼ 10−10 torr). To be
able to directly observe the radiation coming from the ion cloud in the trap region, there
are six ports in the middle drift tube. One of them is used for gas injection, the others have
a set of various spectrometers installed, among them the EBIT calorimeter spectrometer
(ECS). The ECS is a powerful tool as its real-time readout and display over a wide energy
range provides instantaneous feedback about the charge balance and the processes in the
trap.
The trap is filled by injecting neutral to mildly ionized gas directly into the trap region
where it is ionized gradually by repeated collisions with the beam electrons. Gas can be
injected directly through one of the ports with a gas injection system or a sublimator,
depending on the properties of the source. In case of metals for which no donor molecules
can be found that already build a gas or sublime, a Metal Vapor Vacuum Arc (MeVVA
Brown et al., 1986) can be installed above the collector. In a MeVVA low charge metal
ions are knocked out of an easily exchangeable metal wire cathode by an arc. The ions
produced this way are led into the trap through the collector assembly and the top drift
tube. This form of ion injection is not very efficient since not too many ions are produced
that way and only a small fraction of them can be caught by the beam to make it all the
way into the trap.
To overcome the ionization energy, beam currents of tens to hundreds mA are required.
The beam energy is determined by the potential of the middle drift tube. It has a small
energy spread of 20–50 eV and hence can be considered mono-energetic. Once the ions are
created and excited, the emission of their spectra can begin. The emission rate in X-rays
can be described by (Marrs, 2008)

YX = jeσNi (4.2)

where je is the current density of the beam, σ the X-ray production cross section, and
Ni the abundance of the ions in the beam. The whole purpose behind all the focusing
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Figure 4.3:
Artists conception of an EBIT

(https://ebit.llnl.gov/)

Figure 4.4: The EBIT control room

(https://ebit.llnl.gov/EBITPhotoGallery.html)

and compressing of the beam described earlier is because of this proportionality of the
X-ray emission rate to the beam current density. The e-beam current density of EBIT-I is
usually around 4000 A cm−2. Since the radius of the electron beam is only about 30µm,
the ions in the trap are practically stationary, thus, no Doppler shifts occur and the rest
wavelength of the transitions can easily be measured. With some effort in cooling of the
plasma, thermal broadening of spectral lines can be brought to a minimum. Thus, so far,
the resolution of the spectra is only limited by the resolution of the used spectrometers.
This setup is a huge advantage over ion accelerators where usually high velocities of the
ions have to be taken into account.

After the first EBIT (now called EBIT-I), more such devices were built. EBIT-II a copy of
EBIT-I, which now resides at the Lawrence Berkeley National Laboratory, was installed,
while in 1991/92 EBIT-I’s gun and collector were exchanged for ones that could be biased
negatively. Biasing the emitter of the electron gun negatively compared to its surroundings
introduces an electric field at the emitter surface. This electric field reduces the potential
barrier seen by the electron from the work function W to W − ∆W (Schottky effect),
i. e. the emission current is increased. With the new high energy assembly SuperEBIT,
electron beam energies of over 200 keV could be reached. SuperEBIT provides enough
power to produce bare uranium, that is 92 times ionized uranium.

Meanwhile, EBITs were built all around the world. The operating principle is the same
for all of them, only the detailed specifications mentioned above are properties especially
of EBIT-I. Two EBITs were assembled in Oxford, England, with only few changes to the
design of EBIT-II. One of them made its way to the National Institute for Standards and
Technologies (NIST) in Gaithersburg, Maryland. There are also EBITs in Berlin (Max-
Planck-Institut für Plasmaphysik, Humboldt-University), at the Max-Planck-Institut für
Kernphysik in Heidelberg (originally built at the Albert-Ludwig-University Freiburg), in
Dresden (commercial mass production), Stockholm, Belfast, Vancouver, Shanghai, and
Tokyo (Beiersdorfer, 2008). The Heidelberg group even built a portable version called the
FLASH-EBIT whose purpose it is to be shipped to X-ray laser facilities to be able to do
photo-ionization measurements directly in the ion trap (Epp, 2007).
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4.2 Measurement

Usually, to get a good charge balance towards He- and H-like ionization states, it is
recommended to operate with a well focused electron beam and a shallow trap. While for
monitoring purposes the highly charged ions are still desired, the focus of interest lies in
the intermediate charge states. Since the lower charge states are reached on the way of
the production of the higher ones, to shift the charge balance towards lower charge states,
the EBIT settings have to be adjusted to produce the highly charged ions less efficiently.
This adjustment can be achieved by detuning the beam, deepening the trap potential and
flooding the trap with larger amounts of neutral gas.

However, the day-to-day performance of an EBIT changes with parameters that do not
lie in the experimentator’s hands and some of them even stay unnoticed and unrecorded.
Changes in the pollution of the vacuum with various materials, in vacuum pressure, in
temperature, gun properties and so on affect the outcome of seemingly the same set of
parameters. Once a parameter set is found that serves the investigator’s purposes well,
this set will in principle still give a good starting point for optimization later on. Therefore,
keeping the above mentioned principles of EBIT operation in mind, trial and error will
lead to the desired charge state and count rate.

Accordingly, for the Si measurement EBIT was operated with an electron beam energy
of 8.16 keV at a beam current of 100.3 mA and a trap potential of 0.05 kV. The gas was
continuously injected with a pressure of roughly 1.4·10−6 torr. Every 364 ms the trap was
emptied to start the ionization process over. Figure 4.5 shows how the charge states in
the trap slowly increase with the EBIT phase. A 0.5 mil thick beryllium window between
the spectrometer and EBIT serves as a low energy cut-off for L-shell lines that originate
mainly from background through atmospheric gases like nitrogen and oxygen. Through
this filter the measured count rate is reduced in energy regions outside of our interest but
is hardly affected in the Si and S Kα regions (compare Fig. 4.6). Since then it is less likely
for two photons to hit the same pixel so shortly after each other that their pulses overlap,
the resolution and hence the quality of the measured events increases.

In case of the sulfur, the EBIT conditions were at an electron beam energy of 7.1 keV
and beam current of 70 mA with a trap potential of 0.1 kV. The SF6 was injected with a
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pressure of roughly. An EBIT cycle lasted 245 ms. The Kα spectra produced with these
EBIT parameters were then measured using the EBIT Calorimeter Spectrometer (ECS).

4.3 EBIT Calorimeter Spectrometer

The ECS is a microcalorimeter assembled by the X-ray calorimeter group around R. Kelley
and C. Kilbourne at the Goddard Space Flight Center/NASA (Porter et al., 2008a,b,
2009a,b). It is the successor of the copy of the XRS on-board Astro-E1, which was built
out of spare parts, then shipped to EBIT-I/LLNL and later on upgraded to the standards
of the replacement mission Suzaku2 (Porter et al., 2004). Had the Suzaku XRS not failed
after only three weeks of operation in space, we now had the luxury of identical instruments
in space and in the laboratory.

A calorimeter is a broad band photon detector capable of measuring the energy of the
incident photon without any further dispersive elements in front of the detector. The main
parts of the detector body are an absorber, a thermistor and a heat sink (see Fig. 4.7).
When an X-ray photon hits the absorber, an electron of an atom in the absorber material
is knocked loose and rattles around in the pixel body, disturbing more and more electrons.
This increase in internal motion is equivalent to an increase in temperature of the absorber.
The temperature change is measured with a sufficient sensor and then dissipated into the
heat sink.

For this principle to work, absorber, sensor and the thermal link to the heat sink have
to fulfill a few requirements. The absorber needs to be opaque to X-rays and sufficiently
convert the incident energy to a temperature variation. Therefore, the absorber must
thermalize very well, i.e., it has to distribute the complete incident energy across a thermal
distribution of the absorber body efficiently in a reproducible way. Additionally, its heat

1Unfortunately, Astro-E was lost to the ocean due to the failure of its launch vehicle to reach orbit
on 10 February 2000. Five years and five months later, Astro-E2 a.k.a. Suzaku was launched, built on
the basis of the Astro-E developments and upgraded to the new standards of technology. The bad luck
of calorimeters in space continued when shortly after the launch the complete reservoir of liquid helium
boiled off into space, making the XRS unusable. Much effort is put into the success of the calorimeter of
the upcoming NeXT/Astro-H mission to be launched in 2014.

2almost doubled in spectral resolution
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capacity C should be low such that already small amounts of deposited energy result in a
preferably large temperature change ∆T (Stahle et al., 1999)3.

The sensor is attached to the absorber via a thermal link weak enough to allow the absorber
material to come to equilibrium before the temperature change reaches the thermistor. The
thermistor is a resistor whose resistance R strongly depends on the temperature T around
the working point and hence is very sensitive to any temperature changes. The sensitivity
of the thermistor is characterized by the dimensionless quantity

α =
T

R

dR

dT
, (4.3)

describing the fractional resistance variation versus the temperature variation (Galeazzi
et al., 2000). Higher sensitivity to temperature variations, and with it higher output
signals, result in higher values of α.

The change in resistance then can be measured by applying a bias current to the thermistor
and monitoring the resulting voltages. In principle, the change in resistance could also
be determined via a bias at constant voltage, i.e., monitoring the change in current, but
this approach is rather unusual for commonly used solid state thermistors because of their
large resistance (Galeazzi et al., 2000).

The temperature sensor is connected to a heat bath via an even weaker thermal link,
which is weak enough to allow the energy deposited by the incident photon to thermalize
completely before the temperature decreases again due to the lower temperature of the

3A more theoretical description of the functionality of calorimeters can be found in, e.g., Galeazzi &
McCammon (2003) and McCammon (2005).
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heat bath, but strong enough to cool the absorber to its base temperature as soon as
the temperature change is recorded. This way the link makes sure that the energy of the
incident photon is measured correctly and at the same time keeps the dead-time of the
detector small. In other words, the time for the base temperature to be restored in the
absorber material should be the slowest time constant in the system. If this time constant
is too low, however, high count rates become a problem because of the overlap of the
pulses of succeeding events.

The change of temperature in the absorber is proportional to the energy of the incident
photon

∆T ∝ E

C
(4.4)

and is usually in the order of a few milli-Kelvin. To maximize the relative increase in
temperature ∆T/T and to be able to distinguish the energy deposited by an incident
photon from mere thermal noise, the heat bath is cooled down to a temperature in the
order of 50 mK, i.e., close to absolute zero. A hypothetical instantaneous deposition of an
energy E by an X-ray photon then produces a voltage pulse with exponential decay time
constant τ = C/G where G is the thermal conductivity of the thermal link. The voltage
across the thermistor can be recorded continuously and analyzed for pulses instantaneously.
Recognized pulses which meet certain criteria in shape are identified as events and flagged
according to their quality. If telemetry is not an issue, it is possible to display the measured
events in real-time, which allows to monitor the conditions in the trap easily.

Although calorimeters are far away from being able to compete with CCD cameras in
terms of pixel size and number, they have the huge advantage that they cover a broad
energy range with almost the same (high) resolving power over the whole region. Their
quantum efficiency is limited below 1 keV due to the infra-red blocking filters that are
supposed to shield the detector from thermal energy. Above 10 keV the absorption cross
section of the absorbing material is a limiting factor (Porter et al., 2005). The latter can
at least somewhat be overcome by employing a second set of thicker pixels, which cover a
wider energy range although with generally less resolving power. For instance, the ECS
consists of 18 midband pixels covering an energy range from 0.1 to 10 keV and 14 high-
energy pixels for 0.5 to 100 keV. While a midband pixel comprises 625× 625µm2 of 8µm
thick HgTe absorber material, a high-energy pixel is with 625 × 500µm2 slightly smaller
but with 100µm a lot thicker. The quantum efficiency of the midband array is thus 95 %
at 6 keV corresponding to roughly 4.5 eV FWHM, of the high energy array it is 32 % at
60 keV, i.e., 32 eV FWHM.

The ECS operates at a temperature of 50 mK. To achieve and maintain this low tempera-
ture, a set of refrigerators and shields is installed. The detector housing contains infra-red
absorbing materials. A liquid nitrogen (T =77 K) shielded liquid helium (T = 4.2 K) de-
war at atmospheric pressure separates the internal parts of the detector from the outside
world at room temperature. Pumped helium can become even colder than its atmospheric
4.2 K. This cooling to 350 mK is done by a Chase Cryogenics4 closed cycle 3He/4He refrig-
erator. The rest of the way down to the operating temperature of 50 mK is undertaken by
an Adiabatic Demagnetization Refrigerator (ADR). ADRs use certain types of salts com-
posed of molecules that have high magnetic moments (Lounasmaa, 1974). These magnetic
moments are usually de-aligned due to the random thermal motion of the molecules. If a
strong external magnetic field is applied to the salt, the magnetic moments of its molecules
align themselves with the magnetic field such that the magnetic energy of each molecule

4Chase Research Cryogenics Ltd., Uplands, 140 Manchester Road, Sheffield S10 5DL, UK.
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is minimal. The surplus energy being released during this process can be dumped to the
pre-cooler. With the slow reduction of the external magnetic field, the molecules slowly
de-align themselves again. Because of the lack of any heat source (the thermal link to the
pre-cooler is disconnected) the demagnetization happens adiabatically, effectively cooling
the salt. Once the salt is at the desired temperature of the heat bath, it is thermally linked
to the detector pixels. Now the demagnetization instead consumes the heat deposited by
the incident photons. The reduction speed of the external magnetic field can be controlled
in such a way that the salt, i.e., the heat bath, stays at a constant temperature. After a
while the magnetic moments of the salt are de-aligned to such an extend that the cooling
power of the ADR runs out. The whole cycle has to be restarted. In case of the ECS, this
happens after about 65 hours.

The next generation of microcalorimeters will use superconducting transition edge sensors
(TES), i.e., sensors that are very close to a phase transition and therefore extremely
sensitive to temperature variations; even more than the so far commonly used thermistors.
Such a next generation calorimeter built on the basis of significant improvements to the
calorimeter technology developed for proposed X-ray satellite missions like Constellation-
X/IXO will arrive at LLNL in the near future. It will constitute the fourth generation of
microcalorimeters employed at this institute and more than double the spectral resolution
to 2 eV at 6 keV (Porter et al., 2009b).

4.4 Calibration

With the XRS GSE extension written for IgorPro5, the incoming photons in the detector
are read out simultaneously and event files are produced in which every single detected
photon is stored together with the pixel it hit, a time stamp, the pulse height and the
voltage measured at the thermistor. The change in temperature of the absorber caused
by the incident photon, ideally is proportional to the energy carried by said photon. The
underlying ground temperature of the absorber, and therefore the thermistor, however,
strongly depends on external influences like the time in the duty cycle and energy de-
posited into the system by electronic and thermal noise. Consequently, as the detector
is constructed to be sensitive to small changes in temperature, already small differences
in the base temperature of the detector lead to some instability in the calibration of the
measured voltage scale back to photon energy. The difference is not large enough to shift
line positions over several volts. For instance, for the ECS the Si L-shell lines will always
be found around 4 V (see Fig. 4.9). Still the drift is large enough to affect the resolution on
short time scales like hours and shift the whole spectrum by a couple eV over longer time
periods. Accordingly, for high precision, high resolution measurements of line energies,
the calorimeter should be calibrated at least once per run, ideally even more to be able to
account for drifts.

Additionally, the inconsistencies unavoidable in the geometry of the pixels cause differences
in their response. Hence, each pixel has to be calibrated separately. In case of the ECS
with only 16 pixels, this still could easily be done by hand. The next generation of
microcalorimeters, however, will be equipped with a number of pixels in the order of a
thousand. Luckily, the calibration can be automated to some extend by numerical means.
To simplify the task of calibrating, Ming Feng Gu wrote a set of ISIS/S-Lang (Houck &
Denicola, 2000) functions (the CXRS package) commonly used for the calibration of the

5http://wavemetrics.com/
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two microcalorimeters, XRS and ECS, by the Livermore EBIT group. Assuming that the
spectrum of X-rays coming from EBIT should look about the same in every pixel, Gu’s
algorithms use cross correlation to shift and stretch the scale of each pixel according to one
reference pixel so that in the end they all look the same (see Fig. 4.10). The coefficients
for the scaling functions are stored in text files for each pixel. The resulting spectra are
plotted and can be checked for their accuracy by eye. Smaller features which do not
match between different pixels can be noted and ignored when choosing calibration lines.
After the re-scaling of the voltage space, all the pixels are added. In the added spectrum,
several spectral lines can be chosen and are then fitted with a Gaussian line profile. The
line centers of these calibration lines are then determined for each individual pixel via the
inverted scaling function with the stored parameters. Finally, for each pixel the values
of the line centers in voltage space are paired up with the value of their well-known rest
energy and a 4th order polynomial is fitted to these pairs. This polynomial describes the
relation between the voltage measured in the detector and the actual energy of an incident
photon. Since ideally with no incident photon no extra heat load in the pixel bodies and,
therefore, no change in resistance is expected, the constant parameter of the polynomial is
frozen to zero during the fit. Consequently, a minimum of four calibration lines is required
to determine the polynomial.

The only remaining question now is which lines to choose as calibration marks. In principle
any set of spectral lines with well-known rest wavelength can be used. Due to the simplicity
of their systems, there are very good theoretical predictions for the wavelength of the He-
like K- and the H-like Lyman-series which also could be confirmed by experiments (see,
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e.g., Garcia & Mack (1965) and Johnson & Soff (1985) for Ly and Drake (1988) and
Vainshtein & Safronova (1985) with a review of Beiersdorfer et al. (1989) for K). With
a device like EBIT, it is not hard to produce clean spectra with a good charge balance,
showing He- and H-like lines. Therefore, these lines are perfect candidates for calibration.

Ideally, one should fit the correct description of the relation between photon energy and
measured voltage to the calibration lines. Unfortunately, this function is way too complex
and not fully understood yet for this approach to be practical. At least we know that
this function is quite well behaved. Over wide energy ranges it is close enough to being
linear that a low order polynomial is a sufficient description, especially since most of the
time the energy region in focus is limited to a few hundred eV. To get an energy scale as
accurate as possible it is nevertheless recommended to find lines which frame the region
of interest. Another aspect of this consideration, however, is the availability of material
that can be injected into EBIT.

For the measurement of the transitions in the lower charge states of silicon, we therefore
chose to calibrate with the Lyman series in He- and H-like neon at around 1 keV and silicon
itself at around 2 keV. Si was injected with the gas injector as Decamethyltetrasiloxane6.
In particular, the used Si lines were Kα–Kγ and Lyα. Ly β blends with Kε and was
therefore neglected. In Ne these two lines are well separated, allowing for Ly β to also be
included for calibration.

6which is an irritant for eyes, skin and the respiratory system but not as toxic and extremely flammable
as silane. Since it is used in make-up production, it is only available in huge quantities, or as a small, free
sample, which is still large enough to serve us for years.
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To produce sulfur ions, sulfur hexafluoride (SF6) was injected. This gas has the advantage
that it already comes with an additional element for calibration. Here, too, we chose the
Lyman series of He- and H-like sulfur at 2.6 keV and fluorine at 800 eV, respectively. In
order to still produce enough H- and He-like fluorine for calibration purposes, the EBIT
parameters have to be chosen in a way that more or less ruins the charge balance in sulfur.
This way a means is provided to monitor the energy scale while at the same time the
desired lower charge states of sulfur are produced. The calibration was done with S Kα-
Kγ and F Kα-Kγ and Lyα and Ly β. S Lyα was discarded since it was not fitted very
well, S Ly β was not visible in the spectrum.
The reference wavelength used for calibration were taken from Drake (1988) in case of the
Kα transitions (line w). Vainshtein & Safronova (1985) provide values for the K series
up to Kδ but as discussed in Beiersdorfer et al. (1989) their results deviate noticeably
from measurements with the deviation increasing strongly with increasing Z. However,
while this issue mainly affects the Kα transitions, transitions from higher levels show
much better agreement with experimental data. Therefore, Kβ and Kγ are taken from
Vainshtein & Safronova (1985) but are corrected for the ground state of Drake (1988).
Values for the Lyman series originate from Garcia & Mack (1965). It is common practice
to list line tables in units of Kayser = cm−1. The conversion factor used in this work is
1 eV = 1.23984186 · 10−4 cm−1.
Figures 4.11 and 4.12 show the Si and S spectra resulting from the combination of the
used ECS pixels. After calibration the ECS events are binned to an energy grid with a
bin width of 0.5 eV. Since the charge states can easily be distinguished in a Kα spectrum
(section 3.8), the single peaks are already labeled with their corresponding ions.

4.5 Quality of the Calibration

The accuracy of the calibration strongly influences the quality of the results mainly in
two ways. First of all, if the calibration is off differently for different pixels, there will
be artificial broadening of the lines, unnecessarily reducing the resolution. If the shift
is about the same for all pixels, they will align well enough but the energy of their line
centers will be wrong. The impact depends on the purpose of the experiment. The energy
calibration has to be as good as possible for determination of transition energies to get
them with small uncertainties. For measurements of other properties like, e.g., the life
time of a transition out of the shape of the natural line width, the exact line energy is
of no concern as long as the resolution fits. Still, the better the calibration per pixel the
better the overlap of the spectra of different pixels.
Since for each calibration the number of reference lines was higher than the number of
free fit parameters, the resulting calibrated spectra are not expected to exactly match the
reference wavelengths. However, the accuracy of the spectra can be quantized and any
determined deviation stated as a systematic uncertainty. For this purpose, some of the
calibration lines are fitted again in the calibrated spectra and the resulting line centers
are directly compared to the input rest energy. As the relation between detector voltage
and photon energy the shift of the spectrum is assumed to be energy dependent. For this
reason, in the following only the He-like line w and the Lyα lines of silicon and sulfur, but
not of their additional calibration gases are compared to their reference values.
The resolution of the spectra is crucial for the number of spectral lines that can be distin-
guished. To estimate the resolution, it is assumed that the resolution of the calorimeter
does not change over the small energy ranges examined. Therefore, a line which is known
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Figure 4.11: Final calibrated silicon spectrum added from all 16 used ECS pixels. Each peak

can already roughly be assigned to a certain ionization state.
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not to be a blend with another line, i.e., He-like line w, is fitted separately with a Gaus-
sian line. The width (FWHM) of such a line is then limited by the detector resolution as
long as we are far away from the natural line width. Consequently, the whole spectrum
is fitted with a set of Gaussian lines whose width is frozen to the determined resolution.
This approach has the advantage that line blends can be determined more easily as due
to the fixed line width it becomes necessary to increase the number of Gaussians instead
of artificially broadening the line in order to find the best fit.

4.5.1 The He-like Lines

With only two electrons the He-like ions still build very simple systems with only few
possibilities to distribute the two electrons over the first and second shell. Since we are
interested in Kα transitions, at least one of the electrons has to be in the 1s shell. Conse-
quently, there are only six singly excited energy levels, namely (1s1/22s1/2)J=1, (1s1/22p1/2)0,

(1s1/22p1/2)1, (1s1/22p3/2)2, (1s1/22s1/2)0 and (1s1/22p3/2)1 with increasing energy. Two of
them are strictly forbidden because they would violate the selection rule ∆J = 0 only
when J = 0 = 0 for any of the electric and magnetic multipole transitions. We are also
only interested in Kα transitions, not transitions inside the n = 2 shell. That leaves us
with only four transitions, which hardly blend.

By far the strongest of these lines with the highest radiative transition probability is the
electric dipole transition 1s2 → (1s1/22p3/2)1. In astrophysics, this line is usually referred to

as the resonance line r (Dopita & Sutherland, 2003), while in atomic physics the labeling of
Gabriel (1972) for Li- and He-like Kα transitions is more established. Thus the same line
is often referred to as line w. The electric quadrupole transitions 1s2 → (1s1/22p3/2)2 (line

x) and 1s2 → (1s1/22p1/2)1 (line y) are transitions between states of different multiplicities

(1S – 3P) and therefore called intercombination lines, in astrophysics denoted with an i.
While they lie very close to each other, they are well distinguishable from line w. The
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Figure 4.14: Gaussian fit of the He-like line w for (a) Si and (b) S. The vertical green line is

the theoretical line center according to the FAC calculation.

Table 4.1: Comparison between the measured line center of the He-like line w with the theo-

retical value of Drake (1988), which was used for calibration, for Si and S. The width of the line

(used as detector resolution throughout the fits) is listed as well.

Z
FWHM line energy (eV)

∆EDrake ∆EFAC
(eV) measured Drake (1988) FAC

Silicon 4.54± 0.10 1864.79± 0.05 1864.9995 1864.811 −0.21 −0.02

Sulfur 4.60± 0.04 2460.605± 0.018 2460.6255 2460.417 −0.020 0.188

transition with the lowest energy in this set is 1s2 → (1s1/22s1/2)1. Because of its magnetic
dipole nature, which leads to even lower radiative transition probabilities and can therefore
mostly be seen in very thin plasmas where collisional de-excitation only happens on time
scales longer than the spontaneous radiative decay of this state, it is called the forbidden
line (f) or according to Gabriel (1972) line z. Due to the different sensitivity of these lines
to the electron density and temperature, their intensity ratios can be used as a tool for
plasma diagnostics (Porquet & Dubau, 2000; Smith et al., 2001).

As the spectral lines of lower ionization states are also found at distinctly lower energies,
line w is truly an unblended line and accordingly the perfect candidate to estimate the
resolution of the measured spectra. Fig. 4.14 shows a zoom into the fitted region of line
w of silicon and sulfur respectively. As can be seen the center of the fitted Gaussian lines
(red histogram) agrees quite well with the theoretical prediction of the FAC calculations
(green vertical line). Since we do not want to rely on such a qualitative examination,
Table 4.1 compares the fitted line centers with the calculations of Drake (1988), which
were used for calibration, and FAC, which will be used as a guide for line identification.
While FAC and Drake (1988) agree to within 0.2 eV with each other, there is a systematic
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shift of 0.21 eV towards lower energies for the silicon spectrum and of 0.020 eV for sulfur
between the measurement and the theory. The lower statistical uncertainty of the He-like
sulfur line compared to the uncertainty of the silicon line can probably be ascribed to
the much higher number of measured counts of sulfur. With a FWHM of 4.54 eV and
4.60 eV respectively, the resolution is well within the expectations for the ECS in this
energy region.

4.5.2 The Separation of the Lymans

The advantage of fixing the width of the fitted Gaussian lines to the detector resolution
can be seen very clearly on the example of Lyα1 and Lyα2. As shown in section 3.3,
the fine structure splitting of the subshells in hydrogen like ions is proportional to Z4. In
H-like silicon the energy difference between the 2p1/2and the 2p3/2subshells is only 1.76 eV.
For sulfur with only two additional protons this separation is already 3.00 eV – just around
the value where two Gaussian lines with FWHM of 4.6 eV begin to be distinguishable. If
the width of the Gaussian line is allowed to vary freely, the fit will result in a line with
much greater width of 5.86 ± 0.13 eV at a line center of 2621.74 ± 0.07 eV, which agrees
very well with the mean energy of the levels, weighted with their statistical weights, of
2621.703 eV published by Garcia & Mack (1965). With the additional constraint of the
known spectral resolution, the Lymans can not only be described perfectly well with two
Gaussian components, they even become necessary to obtain a good fit (see table 4.2 and
Fig. 4.15 for a comparison of fit and theory).
One could argue that in case of the silicon Lyα lines the lower signal to noise ratio is to
be blamed for the indistinguishability of the lines. Although already the small separation
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Figure 4.15: Fit of the Lyα lines of (a) Si and (b) S. The histogram with red solid lines
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Table 4.2: Comparison between the measured line center (in eV) of the H-like Lymans with

the theoretical value of Garcia & Mack (1965), which was used for calibration, and the FAC

calculation for Si and S.

line measured Garcia & Mack (1965) FAC ∆EGarcia ∆EFAC

Si Lyα 2005.93+0.17
−0.24 2005.494† 2005.516† 0.44 0.42

S Lyα1 2622.97+0.20
−0.22 2622.700 2622.730 0.27 0.24

S Lyα2 2620.02+0.25
−0.30 2619.701 2619.731 0.32 0.29

† Mean values calculated by weighing all contributing levels with their statistical weights.

of theses lines can be held against this argument, a test of the calibration spectrum, where
the statistics of the Lyα line is much better, with the same approach confirms that with
this resolution the usage of two Gaussian lines as a description of this peak can not be
justified.

4.6 Influence of the Fit Range

While the Lyα peak is separated by quite a large energy range from the other Kα lines,
the peaks of the remaining ions are pretty close to each other, covering an energy range
of about 150 eV. Of course we could determine the energies of the single lines by rule of
thumb but it would actually be nice to get some results with a little more precision.

There are several ways to approach the analysis of this part of the spectrum. One possibil-
ity would be to fit every peak separately like the hydrogen-like lines. For this approach the
spectrum would be cut into pieces somewhere around the minimum between two peaks.
Parts of the regions with extremely low count rates could even be left out since they would
not lead to a statistically significant detection of a Gaussian line anyway. The advantage
clearly would be to just depose of these residual stray counts.

However, a small cricket sitting on the researcher’s shoulder shouts out a warning that
the fit of a Gaussian line is strongly determined by the tails of the line. The tails would
be just the part that might get cut off depending on where exactly the cut is applied.
Therefore, the influence of the fit region around a peak onto the resulting line centers is
shortly examined.

The silicon line dominated by emission from transitions in Be-like Sixi shall serve as an
example. It is nicely suited as it has a long, slowly draining out left tail that should
emphasize the importance of tails. A model consisting of three Gaussian lines is fitted
to this peak with various fit regions. The FWHM is frozen to the detector resolution as
discussed before. Table 4.3 shows a comparison between these lines for a subset of the
tried out energy ranges. The energy ranges in question are always a multiple of the bin
size, i.e. the range is always changed in steps of 0.5 eV.

For an almost ridiculously large energy region of 1815 to 1835 eV, where already small
portions of the adjacent peaks are included at the edges of the fit region, the best fit
actually moves one of the Gaussian lines ( 1836.8+1.6

−1.7 eV) into the Li-like peak. Shrinking
the range at the lower energy range even by as much as 2 eV leaves the resulting line centers
basically unchanged; the 10 meV difference lies well within the uncertainties. Since the
tail at the higher energy side is steeper, already a smaller change in the upper limit has a
large impact. Decreasing the upper end of the fit region by only one or two bins, makes
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Table 4.3: Comparison of line centers and their corresponding confidence limits for different

fit regions around the Be-like Si peak.

fit range gauss(1) gauss(2) gauss(3)

1815–1835 eV 1836.8+1.6
−1.7 1828.13+0.07

−0.10 1823.27+0.18
−0.26

1817–1835 eV 1836.8± 1.7 1828.14+0.07
−0.10 1823.28+0.18

−0.26

1817–1834 eV 1828.25+0.12
−0.09 1823.78+0.54

−0.29 1818.7+1.7
−1.8

1816–1834 eV 1828.26+0.08
−0.10 1823.8+0.3

−0.4 1818.5+1.0
−1.1

1818–1834 eV 1831.0+2.0
−1.9 1827.94+0.16

−0.53 1823.12+0.23
−0.32

1820–1834 eV 1831.6+2.6
−1.8 1828.03+0.14

−0.27 1823.35+0.26
−0.29

1818–1833 eV 1828.25+0.12
−0.11 1823.9+1.1

−0.5 1820+5
−4

the 1837 eV line unnecessary. Instead a weak line near the lower boundary turns up with
correspondingly large uncertainties. Going back towards the original lower limit then only
has an effect on this new line as it is better constrained through the additional tail bins.
However, if instead more of the lower limit is cut off up to 1818 eV, this third line moves
back towards the upper end of the fit region, resulting in an so far unseen line at 1931 eV
with high uncertainties. Removing two more electron volts shifts the two strong lines by
as much as 0.1 and 0.2 eV but still within their errorbars. At last, the smallest fit region
from 1818 to 1833 eV is not able to constrain the third Gaussian line at all.
There are two Gaussian lines which appear at around 1823 and 1828 eV independently
of the chosen fit region. These are the two strongest lines in this part of the spectrum.
The reason for their passable stability is that they do not directly reach into the tails of
the peak but are somewhat shielded by the weaker lines around them. Their line centers
still cover a pretty broad energy range, though, that is not even overlapping within the
uncertainties of the fit. Apparently, the choice of the used fit range introduces a systematic
uncertainty in the order of 1 eV to the measured line centers. And that is only for the
strong lines. In case of the weak lines, the systematic uncertainty lies somewhere between
non-detection and a couple of electron volts.
Another problem with this approach is that the number of small Gaussians needed to
fit the continuum between the lines can be increased artificially. If there is a boarder or
even a gap between the peaks, a model component could be needed to account for the
continuum from each side of the border while a single component in the middle of the two
peaks might be enough if they were fitted together. Therefore, it is advisable to fit the
whole spectrum at once.

4.7 Line Identification

To avoid the error introduced by a certain choice of fit regions for every peak, the whole
Kα forest is fitted at once. Nevertheless, we still want to take care of the minima between
the main peaks. This continuum can be seen nicely in a logarithmic plot where the lower
count rates are displayed more prominently (Fig. 4.17). A second order polynomial is
included to the model to account for that. In order to better constrain the trend of this
continuum model component, the fit range around the Kα forest is set amply to include
some pure continuum regions. Accordingly, Si is fitted between 1720 and 1880 eV while S
is between 2290 and 2480 eV. Gaussian lines are then distributed over the spectrum until
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Figure 4.16: Overview over the components fitted to the Si spectrum. The data are shown in

black, the red solid line shows the total model, model components are shown with dashed lines.

the residuals and the fit statistics look reasonably good. All fits are performed with the
Interactive Spectral Interpretation System (ISIS; Houck & Denicola, 2000).

Whether or not the fit really improves with the inclusion of an additional Gaussian line is
tested with a Monte Carlo simulation (Müller et al., 2012). The datasets are binned to a
histogram for fitting. The fit function is evaluated on the energy grid of the data with its
parameters set to the values of the best fit. A set of a thousand fake spectra is generated
by filling each bin of the grid with a random number out of a Poisson distribution with
mean equal to the value of the model in this bin. Then the fake spectra are fitted with
the model out of which they were created (model A) and also with the model containing
an additional feature, in this case an additional Gaussian line, (model B). In most cases,
the χ2 value for model B will at least be slightly better than the ones for model A. That
is a normal effect caused by the increased number of available model parameters. Usually
this improvement will not be very large. To determine whether the improvement of model
B over A is significant, the distribution of the difference ∆χ2

fake,i = χ2
B,i − χ2

A,i has to be
examined. If lots of these ∆χ2

fake,i are in the order of or larger than the ∆χ2
real of the

models fitted to the real data, then the additional model component is just a statistical
fluctuation. In contrast, if none of the ∆χ2

fake,i reaches ∆χ2
real even remotely, the line is

probably real and will be included in the model.

The final distribution of the single Gaussian components are shown in Fig. 4.16 for silicon
and in Fig. 4.17 for sulfur. The red line is the total model, data are black with randomly
colored dashed lines overplotted to indicate the single model components. While the charge
states can easily be attributed to the main peaks by counting, assigning which transitions
provide the main contribution to the found Gaussian components is a bit trickier. Here,
the theoretical predictions come in handy. For the line identification the FAC calculations
are chosen over those of Palmeri et al. (2008). The reason is that the measured line
strength strongly depends on the conditions in the plasma. A large Einstein A coefficient,
i.e., a high probability to decay is not sufficient to produce a strong spectral line if the
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Figure 4.17: Overview over the components fitted to the S spectrum. The data are shown in

black, the red solid line shows the total model, model components are shown with dashed lines.

corresponding configuration does not get populated, while a strongly populated level may
even prdouce a strong line with a small transition probability. From Palmeri et al. (2008),
we have, however, only information about the transition probabilities. The following two
sections discuss the results obtained this way for silicon and sulfur.

4.7.1 Silicon

For better visualization, figure 4.18 shows magnifications of the fit components cut into
regions according to the major peaks indicated in figure 4.11. The fit components are then
labeled with the element symbol of the iso-electronic sequence dominating in that region,
followed by a number (counting from higher to lower energies). In addition to the model
components (dashed histograms, random colors) also the transitions calculated with FAC
(sticks, color code as in table 3.2) are displayed. The FAC line strength is in arbitrary
units. In each panel, however, the plotted strength of the FAC lines is renormalized such
that the strongest FAC line has the same strength as the peak value of the strongest
measured line in the same region; the relative line strength of the FAC lines are conserved
in each panel but not between the different panels. The single Gaussian fit components
are identified with the FAC transitions mainly contributing to their line strength. The
results are listed in table 4.4. In each row the FAC lines are followed by the corresponding
transitions as calculated by Palmeri et al. (2008).

For most Gaussian lines the distribution of the FAC lines agrees well enough with the
measurements to allow a decent estimate of which transitions contribute strongest to the
measured features. In case of the F-2 line at 1739.8 eV there are no lines of considerable
strength apparent that could be used for identification. Most probably this line is a blend
of very lowly charged ions (Ne− > 10) which follow shortly after each other beyond the Ne-
like lines towards lower energies. These lines, however, are so weak and blend so strongly
even between different charge states that a serious identification with only a few lines
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would be impossible even if these ionization stages were included in the calculation.

In contrast to most of the lines hardly blending, for both, silicon and sulfur (see next
section) the FAC line z (Si: 1838.20 eV, S: 2429.074 eV) has a huge offset compared to the
measured line center (Si: 1839.25 eV, S: 2430.366 eV). This deviation of > 1 eV appears
in both, the Si and the S spectra. Experience (Beiersdorfer et al., 2009) and simulations
with FAC, where line z appears as a strong line only if collisional ionization is taken into
account, suggest that the identification of this line with line z is nevertheless correct. The
same conclusion is supported by comparing the lines with the reference values of Drake
(1988, Si: 1839.448 eV; S: 2430.347 eV). Consequently, the large difference of the FAC lines
is due to FAC not being meant to be a high precision tool while Drake (1988) is a standard
reference, and is a good example of how far off the FAC calculations can be.

In addition to the identification with the FAC lines, the calculations of Palmeri et al.
(2008) are listed. The LS-coupling notation of Palmeri et al. (2008) is matched to the
energy levels of FAC as described in section 3.12.4. Energies given in parentheses are
not listed in the transition tables of Palmeri et al. (2008). These values are obtained by
calculating the difference between the corresponding energy levels and shift the result by
the average correction Palmeri et al. (2008) applied to the listed transition energies in the
same ion.
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Figure 4.18: Fit of the measured Si Kα spectrum. The data are shown in black, the red

line shows the model, model components are shown as dashed lines. Vertical lines resemble the

theoretical predictions according to FAC.
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4.7.2 Sulfur

For the sulfur spectrum the same approach has been undertaken as for the silicon. The
results are presented in figure 4.19 and table 4.5. Although the table lists weak lines of
Ne- and B-like lines for the lines F-2 and F-3, as for silicon these lines are probably due
to lowly charged ions not included in the calculation.
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Figure 4.19: Same as Fig. 4.18 for the S spectrum.
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4.8 The FAC Model

It has been indicated at various occasions throughout this work that especially for many-
electron systems the numerical calculations of the energy levels in these ions can differ
from reality by a few electron volts. To quantify this uncertainty for the FAC calculations
in hand, the FAC output was combined to a model and fitted to the measured data. To
limit the number of parameters in this model a few assumptions have to be made. First,
it is assumed that the whole ion can be shifted in energy but that the relative distances
between all lines of the same ion are correct. Remembering the terms going into the
Hamiltonian for the relativistic hydrogen problem in section 3.3, there are some that can
cause different shifts depending on any of the quantum numbers. The next assumption
is that the relative line intensities within an ion are derived from the theory of detailed
balance properly. There are two caveats to this assumption. The more severe one is the
estimate that the radiative decay rates are only computed to within 20% of their true
value. This uncertainty carries directly on to the intensities. The other issue is that, as
discussed in section 3.12, the calculation of the line intensities is not yet self-consistent. The
unknown charge balance in the ion trap is less crucial in case of no considered interaction
between different ionization states as the normalization between the ions is neglected in this
model anyway. But as soon as ion-ion interactions such as ionization and recombination
mechanisms are taken into account, the abundance of one ion can seriously influence the
line ratios in another ion. Then, last but not least, to stay consistent with the single-line
fits of the previous sections and because the detector resolution has still not changed, all
lines are frozen to the FWHM determined from the He-like lines.

With all these assumptions the model becomes relatively simple, though still computa-
tional expensive. All lines given by FAC for the same ion are convolved with a Gaussian
of FWHM with mean equal to the FAC line minus some shift ∆E. The simulated line in-
tensity Ii is used as the norm of the single Gaussian lines while the norm of the compound
is left as a fit parameter. Then the fit function for each ion is the sum over all of these
Gaussians:

F (Ei, Ii,∆E, fwhm, N) =

N ·
∑

i

Ii · 2
√(

log(2)

π · fwhm

)∫
dE exp

(
−4 · log(2) · [E − (Ei −∆E)]2

fwhm2

)
. (4.5)

For the helium-like lines, the 2p → 1s and 2s → 1s transitions are computed in separate
models as the abundant appearance of the forbidden line z is a special case. For all other
ionization states, no 2s→ 1s transitions are contained in the FAC output anyway because
they are so weak that they fall under a certain threshold for lines to be listed. Since
unfortunately all ionic states below F-like blend indistinguishably into each other, for this
part of the spectrum also the relative line intensities and energies between the ions has to
be considered to be correctly modeled such that the fit parameters for these ions are tied
to each other.

The fits of the FAC model to the silicon and sulfur data are shown in Fig. 4.20 and
4.21. As expected this model does not lead to a perfectly well description of the data.
Nevertheless, some of the line shapes agree remarkably well with the measurements; for
instance, the (orange) C-like and the (pink) Be-like lines. How much the FAC data needs
to be shifted to come to this agreement can be seen in table 4.6. The large discrepancy in
the He-like z lines has already been discussed in the previous sections and is due to the
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Figure 4.20: Fit of the silicon spectrum simulated with FAC to the laboratory measurement.

The single components of the fit model are displayed in different colors. The color code indicates

the iso-electronic sequences in the same convention as throughout the rest of this work.
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Figure 4.21: Fit of the sulfur spectrum simulated with FAC to the laboratory measurement.

The single components of the fit model are displayed in different colors. The color code indicates

the iso-electronic sequences in the same convention as throughout the rest of this work.
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Table 4.6: Shifts of the FAC lines compared to the measured data. Due to the definition in

equation 4.5 negative shifts ∆E correspond to the FAC energy being higher than the measured

one. The shifts are given in electron volts.

Ion ∆E(Silicon) ∆E(Sulfur)

H-like −0.24+0.28
−0.29 −0.01± 0.07

He-like 0.02± 0.05 −0.192± 0.017

He z −1.06± 0.06 −1.299± 0.022

Li-like −0.46± 0.05 −0.647± 0.023

Be-like −0.28± 0.09 −0.85± 0.07

B-like −0.12± 0.06 −0.29± 0.06

C-like −0.21± 0.08 −0.56± 0.11

N-like 0.22± 0.10 0.052± 0.16

O-like 0.56± 0.09 0.44± 0.13

F-/Ne-like 0.76± 0.07 1.24± 0.13

fact that numerical codes are not almighty. The apparently large shift of the F-/Ne-like
lines can be explained from the calculation. Since no ions less ionized than the Ne-like
iso-electronic sequence are considered when solving the rate equations, these lines are also
missing in the FAC model with the effect that the F-/Ne-like complex has to be shifted to
lower energies during the fit in order to account for the missing lines. Therefore, this last
line of table 4.6 should only be taken with much care as it is dominated by systematics
rather than the numerical problems of many-electron systems.



Chapter 5

Chandra’s View of Cyg X-1

I don’t care if anybody gets it. I’m
going as the Doppler effect. If I have

to, I can demonstrate:
NYEEEROOOOM

Sheldon Cooper at a Halloween party
in: The Big Bang Theory

5.1 Chandra

The Chandra X-ray observatory was launched on 1999, July 23 by the space shuttle
Columbia. After it successfully reached its orbit, it was renamed from its working name
Advanced X-ray Astrophysics Facility (AXAF ) to honor the Indian-American astrophysi-
cist Subrahmanyan Chandrasekhar (1910–1995). The energetic charged particles trapped
in the van Allan belts by the Earth’s magnetic field are extremely dangerous for the sen-
sitive X-ray detectors on-board the satellite. Therefore, Chandra has a highly elliptical
orbit with an eccentricity of ≈0.88 that leads it from as close as 3900 km perigee to around
a third of the distance to the moon at roughly 145000 km apogee (December 2011 CXC,
2011). With these orbital parameters, Chandra spends around 80% of the 63.5 hour long
orbital period outside of the radiation belts. The length of the orbit makes extremely long
continuous observations of up to 160 ks possible.

Figure 5.1: Chandra spacecraft (from http://chandra.harvard.edu/about/spacecraft.html).

94
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Chandra is together with the Hubble Space Telescope, the late Compton Gamma-Ray
Observatory and the Spitzer Space Telescope one of NASA’s four Great Observatories. It
comprises a number of high precision instruments (see Fig. 5.1). A complete description
of them can be found in the Proposer’s Observatory Guide (CXC, 2011). Here only an
overview over the ones relevant for this work is given.

5.1.1 The Mirrors

An essential part of a telescope are the mirrors to collect and focus the light onto the
detectors. Unfortunately, the index of refraction n is a function of the energy of the light.
According to Snell’s law of refraction

sinα1

sinα2

=
n2

n1

= n, (5.1)

where αi are the angles of incidence and refraction measured to the normal of the surface
and ni are the indices of refraction of the two materials, total internal reflection, i.e.,
α2 ≥ 90◦, only occurs below a critical angle θc = 90◦ − α1 with

cos θc = n =
√
εrµr. (5.2)

The index of refraction is defined as the as the ratio of the speed of light in vacuum
and the speed of light in the medium and can be determined via the Maxwell relation
n =
√
εrµr (Maxwell, 1865). The permeability µr of the material is approximately unity

and the dielectric constant εr can be expressed in terms of the electron density ZN for
free electrons (e.g. in a metal) if the frequency ω is much larger than any resonance in the
material:

εr = 1− ω2
p

ω2
with the plasma frequency ωp =

√
4πZNe2

me

(5.3)

(Jackson, 2006). Since εr is rather small and we hence expect small angles θc, we can
approximate

√
εrµr ≈ 1 − (εr − 1)/2 and cos θc ≈ 1 − α2/2. With N written in terms of

the mass density ρ = AmuN where A is the atomic mass number and unit mu, the critical
angle can be expressed as

θc =

√
1

π

Z

A

ρ

mu

e2

mec2
· λ (5.4)

Figure 5.2:
Chandra’s mirror assembly

(from http://chandra.

harvard.edu/about/

telescope_system.html).
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with the wavelength λ = c · 2π/ω. For realistic numbers for X-rays (λ ≈ 1 Å) and gold
(Z = 79, A = 197, ρ = 19.3 g cm−3) we then obtain a critical angle θc ≈ 1. Because of
the small angle with respect to the surface of the material, the reflection is referred to as
grazing incident reflection (Aschenbach, 1985).

This shallow angle means that the mirrors have to be aligned almost parallel to the incident
X-rays and hence have a very long focal length and small effective reflecting area compared
to the geometry of the mirror shells. Unfortunately, this condition also leads to severe
problems with astigmatism. Wolter (1952) found that using paraboloid/hyperboloid or a
hyperboloid/ellipsoid combinations of mirrors mounted coaxial and confocal instead of a
single spherical mirror leads to major improvements of these problems. To increase the
effective area, a set of nested mirror shells is used. Wolter (1952) was originally interested
in X-ray microscopes to increase their resolving power. Only Giacconi & Rossi (1960)
adopted the idea for X-ray telescopes where it is widely used nowadays. In the case of
Chandra Wolter’s ideas are implemented with a set of four nested paraboloids followed
by the same number of hyperboloids (see Fig. 5.2). The mirrors are coated with a 33 nm
thick iridium layer. Iridium has only two protons less than gold but is the element with
the second highest density, thus maximizing the critical angle (eq. 5.4).

5.1.2 The Gratings

In order to be able to do spectroscopy with the focused light, Chandra is equipped with
a set of gratings, which can either stay tilted to leave room for other instruments or be
flipped into the optical path.The gratings disperse the transmitted light according to the
grating equation

m · λ = p · sin β (5.5)

β

β

β

Optical Axis

On-axis detector location

Detector offset to Rowland focus

On-axis

grating location

Rowland Circle

Dispersion direction

X-rays

Grating facets

Cross-dispersion

directon

Imaging

focus

Rowland

focus

Top View

Side View

Figure 5.3: The Rowland geometry (from CXC, 2011).
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where m is the order, λ the wavelength in Ångström, p the period of the grating and β the
deflection angle. The angles of the different orders of the same wavelength only depend on
the period of the grating’s grooves, but not on their shape (Palmer & Loewen, 2005). By
choosing the spacing of the grooves carefully, it can be controlled in which diffraction order
most of the diffracted energy will end up. Also, diffracted beams might overlap depending
on the incident wavelength range and grating density, i.e., the higher m, the stronger the
overlap between succeeding diffraction orders. This overlap can be separated with energy
dispersive X-ray detection in the focal plane.

There are two sets of gratings: the Low and the High Energy Transmission Gratings
(LETG and HETG). The LETG operates in the energy range 0.08. . . 0.2 keV. Therefore,
only the HETG with an energy range of 0.4. . . 10 keV is f interest for our purpose. The
gratings on-board Chandra both follow the Rowland geometry (Rowland, 1882). The
Rowland geometry reduces any additional optical aberrations coming from the gratings
and ensures that light that has already been focused by the mirrors and goes through
different grating facets are again focused at the same point. Figure 5.3 shows a sketch of
the Rowland geometry as it is realized in the HETG. Grating facets are mounted with
there centers being on the surface of the Rowland torus, which is formed by rotating the
Rowland circle about the line through the on-axis focus parallel to the dispersion direction.
So in the figure of the top view, the axis of the torus would be in the plane perpendicular
to the optical axis while in the side view it would stick out perpendicular to the page.
The Rowland circle is a circle with diameter equal to the distance between a grating facet
on the optical axis and the position of the zeroth order image in the focal plane. This
diameter is about 8.63 m for HETG.

As indicated in the top view of the sketch, the focal point for each diffraction angle belongs
to a certain position on the edge of the Rowland circle. To maintain the focal properties
of the telescope in dispersion direction for a large range of diffraction angles β, the shape
of the image plane of an ideal detector would thus follow the counterpart of the Rowland
circle. The deflection of photons by the grating becomes larger with decreasing photon
energy, making the curvature of the Rowland circle more important. Thus, the HRC-S
detector which is mostly used in combination with the LETG follows this curvature while
ACIS-S for HETG is mounted tangentially to the Rowland circle.

5.1.3 HETGS

The HETG (Canizares et al., 2005) consists of two sets of gratings, the High Energy
Grating (HEG) for the energy region of 0.8 to 10.0 keV and the Medium Energy Grating
covering 0.4 to 5.0 keV. Their resolving power (E/∆E) ranges from 65 (80) at high energies
to 1070 (970) at the lower energy limit for HEG (MEG). This resolving power translates
to an energy resolution of 0.4 to 77 eV FWHM.

The grating facets of HEG and MEG are both built out of gold bars attached to a polyimide
plating base. They are mounted in two rings each on a support structure (1.1 m diameter)
on the surface of the Rowland torus; compare Figure 5.4 where the inner two rings resemble
the 144 grating facets of HEG and the outer two rings the 192 facets of MEG. The gold
bars of HEG have a width of 1200 Å with a period of 2001 Å, while the MEG facets have a
period of 4002 Å with 2080 Å wide bars. The one-half ratio of the bar width to the period
suppresses even orders of dispersion such that the determination of photons in the first
order is as unambiguous as possible. Since the dispersion directions of HEG and MEG
differ by almost 10◦, the image of a point source dispersed by HETG is a crossed pair of
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Figure 5.4: HETG facets

mounted on the Rowland torus (from

http://space.mit.edu/HETG/hetg_info.html).

Figure 5.5: The High Energy Transmission

Grating (from CXC, 2011).

arms (see Fig. 5.6).

The HETG is usually used in combination with the High Resolution Mirror Assembly
(HRMA) and the Advanced CCD Imaging Spectrometer (ACIS), their combination being
called High Energy Transmission Grating Spectrometer. Due to the smaller period of the
HEG, it has a higher spectral resolution of 5.5 mÅ per ACIS detector pixel, while the MEG
with its lower resolution of ‘only’ 11 mÅ per ACIS pixel has the advantage of covering a
larger energy range.

5.1.4 The ACIS Detector

The Advanced CCD Imaging Spectrometer (ACIS, Garmire et al., 2003) is one of two
detectors in the Science Instrument Module (SIM). The interested reader can look up
the details of the second detector, the High Resolution Camera (HRC), in CXC (2011).
Both detectors can be used in two modes: one with a longish detector setup for grating
spectroscopy (-S) or a square shaped setup for imaging (-I).

ACIS-I consists of 4 planar CCD chips in a 2×2 array and is not employed for our Cyg X-1
observations. ACIS-S is an 1× 6 array of CCD chips numbered S0 to S5 successively. The
CCD chips are silicon solid-state detectors with 1024× 1024 pixels. To prevent electrons
in the valence band to be excited to the conduction band thermally rather than through
the inner photon effect, the chips are operated at −90 to −120◦ C. The electron-hole pairs
produced by incident X-ray photons result in a measurable charge that is proportional to
the X-ray energy: every such pair corresponds to an X-ray energy of 3.7 eV. This energy
dependence of the detector is in contrast to optical CCDs where each photon makes exactly
one electron-hole pair such that the read-out charge is proportional to the intensity of the
incoming light rather than the energy of its photons. Optical blocking filters (OBF) of
3.5µm thick layers of aluminum and polyimide are supposed to shield the CCD chips from
contamination by optical light.

Four of the six chips are front-side-illuminated (FI) chips. This means that the charges are
produced, stored and read-out at the front side of the chip, the side that is illuminated by
the X-rays. Low-energetic cosmic protons, which are also focused by the mirror assembly,
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damaged these chips already very early during the mission (Weisskopf et al., 2002). Since
this hazard was discovered and its cause isolated, ACIS is removed from the focal plane
of the mirrors during every pass of the satellite through the Earth’s radiation belts. The
other two chips (S1 and S3) are back-side-illuminated (BI) and therefore suffered from less
damage through the radiation belts. Since X-rays are able to penetrate the silicon crystal,
this approach is well possible. Over time the detection efficiency of ACIS has decreased
slowly because of molecular contamination of the OBFs.

It is unavoidable to have small gaps between the single detector chips (corresponding to 18
pixels in the case of ACIS). To recover the information lost with the part of the spectrum
hitting exactly those gaps, Chandra dithers in a Lissajous-pattern. Thus the image is
spread over several pixels so that during an observation not always the same range of the
dispersed spectra is affected. Since every photon event is recorded with a time stamp, the
resulting differences in exposure time and effective area can be accounted for during the
post-processing of the raw data. An additional advantage of Chandra’s dithering is that
the impact of bad pixels has less influence on the data analysis.

5.1.5 Readout modes

A CCD is read out by applying voltages to each row in such a way that all electrons move
one row towards the frame store register at the end of each column. The transfer from one
row to another takes 40µs so that it is possible to read out the whole column in 41 ms.
The readout of a full frame store, however, takes 3.2 s.

If the brightness of the source is low enough, it is suitable to choose the Timed Exposure
(TE) read-out mode of ACIS. Here, the frame store is read out while the CCD is exposed
to the incoming X-rays for some time texp. The minimum sensible exposure time is, of
course, 3.2 s. The only way to increase this time resolution is to use only parts of the CCD
chips.

In case of very bright sources, the probability increases for the CCD chip to be hit during
the read-out process and for more than one photon to hit the same detector pixel. The
former leads to a misidentification of the event position since the pixels have already been
shifted. The latter is called pile-up and has the problem that two photons in the same
pixel during one frame-time can not be distinguished. They are misinterpreted as a single
event with an energy nearly as high as the sum of the two single events’ energies. These
events are either rejected by the software or are identified as higher order events, both
causing a reduced flux in the main first order spectra. For nice reviews of pile-up in CCD
chips see Ballet (1999, 2001) and Davis (2001).

To avoid these effects in very bright sources, another readout mode can be chosen for the
observation. In Continuous Clocking (CC) mode the columns are read out continuously.
Since then the information about the row that was hit by the photon is invalid, effectively
decreasing the detector since to 1024 × 1 pixels. In return for this sacrifice, the frame
time is reduced to 3 ms. To obtain a valid flux calibration in this mode, the HEG and
MEG spectra still have to be separated. However, due to their different dispersion, the
internal energy resolution of the CCD chips is sufficient to distinguish these events. The
afore mentioned suppression of the even order spectra ensures that the first order HEG
spectrum can not be confused with the overlapping second order MEG spectrum.
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Table 5.1: Start and end time of obs. ID 3814 (after Hanke (2007), p.53).

date Chandra-timea MJDb phase

start 2003-04-19, T16:47:31 167 158 051 52 748.69967 0.93
end 2003-04-20, T06:41:43 167 208 103 52 749.27897 0.03

aThe Chandra-time is measured in seconds since 1998-01-01, T00:00:00 (MJD 50814).
bModified Julian Date: MJD = JD− 2400000.5 where JD is the Julian Date counted in

days since noon of Jan 1st, 4713 bc.
Figure 4.1: Detector-image of obs. ID 3814, color-coding the photon energies.

Figure 4.2: ‘Sky’-image of obs. ID 3814, color-coding the photon energies.

Figure 4.3: Default (red) and narrow (blue; excluding most of the halo) extraction regions.

0
50

00
10

4
1.

5×
10

4

2 4 6 8 10 12

0
50

0
10

00

Wavelength [Angstrom]

Figure 4.4: Background count rate (lower panel) for different extraction regions:
red = default region, orange = 40 pixel width, green = 25 pixel width, blue = 10 pixel width.
Unless the region is small enough, the spectra are dominated by the scattering halo, as the
count rates are proportional to those of the Cyg X-1 spectrum (shown in the top panel).

The plot shows the number of counts in 0.1 Å bins of each MEG–1 spectrum.

54

Figure 5.6: Sky-image of ObsID 3814, color-coding the photon energies (from Hanke (2007),

Fig. 4.2).

5.2 ObsID 3814

There are several Chandra observations available which were found to have absorption
lines of low charge states of silicon and at least some also of sulfur (Hanke, 2011). The
experimental results for the line centers of these two elements shall now be exemplarily
applied to one of these observations to better constrain the origin of the lower charge
states in the Cyg X-1 system. In the following sections, the focus is on the 48 ks Chandra
observation # 3814. The observation was originally proposed by Katja Pottschmidt et al.
to examine the soft X-ray absorption disk and probe the widely unknown properties of
the stellar wind. The observation was carried out in 19/20 April 2003 when the black hole
was in superior conjunction, i.e., around phase 0◦ where the absorptions dips preferentially
occur. For a detailed description of the observation time see table 5.1.

The observation was performed with HETGS and ACIS-S in timed exposure (TE) mode
with a frame time of 1.741 s. This short frame time is possible by only reading out a 512
pixel sub-array. To avoid telemetry saturation, an attempt was made to cover the zeroth-
order image with a 40× 40 pixel window but the source was not completely covered.

Figure 5.6 shows the image of the dispersion on the CCD chips. The shortest wavelength
close to the zeroth-order image, corresponding to the energy band 2.5–8 keV is colored in
blue, the mid energy band in green and the low energy band of 0.2–1.5 keV in red. Due to
their lower dispersion the MEG arms, going from the upper left to the lower right corner,
can be clearly distinguished from the HEG arms which run from the lower left corner to
the upper right one. There are also two afterglow events and four hot columns visible.
They are at fixed detector position and therefore at different sky positions.

The non-dip as well as the dip spectrum of this (Hanke, 2007; Hanke et al., 2009) and
other Chandra observations (Hanke, 2011; Mǐskovičová, 2012) have already been analyzed
extensively. Therefore, we can build up on these results and focus on the low charge
states for which the atomic data tables have been missing so far. Nevertheless, for one
observation we will quickly go through the steps needed to prepare the spectrum for fitting
the Si and S regions.
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5.2.1 Lightcurves and Color-Color Diagrams

We start with the lightcurve which is displayed in the top panel of figure 5.7. Two major
dips occurred during this observation. The first one is rather compact and lasts around
1 h 43 min with the deepest core still having a duration of 40 min. The second dip is more
extended with a duration of over 2 h and also somewhat deeper. Hanke (2007) followed the
work of Pottschmidt et al. (2006) and defined the non-dip spectrum for times with a total
count rate of at least 82.7 counts s−1. Since the total count rate can be affected by various
processes while the spectrum hardens during dipping (cf. Sec. 2.6.2), it is more sensible
to set the cuts for the different dipping stages via the hardness ratio, or, to resemble the
dip structure of the lightcurves, via the softness ratio rather than the lightcurve itself.
Therefore, Hanke (2011) changed the previous approach and defined the different stages
of dipping via the softness ratios in the color-color diagram (Fig. 5.8). Colors are defined
as the intensity ratio of different energy bands. The soft X-ray color is the ratio of the
0.5–1.5 keV (A) and the 1.5–3 keV (B) Chandra count rate, the hard X-ray color the ratio
of the 1.5–3 keV (B) and the 3–10 keV (C) rate.
Since this analysis is mainly based on the findings of Hanke (2011), the cuts applied there
are adopted in this work. They are

B/C ≥ 3.5− 4A/B

3.5− 4A/B > B/C ≥ 2.65− 4A/B

2.65− 4A/B > B/C ≥ 0.6

0.6 > B/C. (5.6)

for the ‘non-dip’ (red), ‘weak dip’ (green), ‘dip’ (light blue) and ‘strong-dip’ (dark blue)
spectra. How these cuts in the CC-diagram translate to the softness ratio A/C can be
seen in the lower panel of figure 5.7.

5.2.2 Continuum

Before we can take a closer look at the evolution of the Si and S absorption lines, we need
to describe the continuum of the X-radiation that is absorbed by these elements. For each
of the four spectra the continuum model is evaluated over the whole energy range of 2 ot
15 Å. Since the detector can be affected by pile-up, the continuum model is wrapped in
the ISIS function simple_gpile3 to reduce the effects of pile-up. During pile-up two or
more photons arrive in the same pixel during the same frame time and are hence counted
as only one photon of higher energy or different order. Pixels with high count rates are
usually more affected by pile-up with the effect scaling exponentially. Assume C to be the
number of counts in a pixel and p the pile-up fraction. Then the count rate of the pixel
with the highest count rate maxj {C(j)} is reduced by a factor 1− p by

C ′(i) = C(i) · (1− p)
C(i)

maxj {C(j)} . (5.7)

Nowak et al. (2008)’s function simple_gpile modifies an arbitrary model spectrum M(E)
according to the pile-up formula (Eq. 5.7) by estimating the number of counts CM : The
total number of counts in a pixel B(i) in a single readout cycle is roughly given by the
flux M , the ancillary response functions (ARFs)1 Am for each order m and the ratio of

1The ARF is a matrix containing the energy dependent effective area of the telescope. The effective
area is smaller than the actual geometric collecting area of the telescope due to effects of reflectivity,
vignetting and detector quantum efficiency.
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frame time tframe and exposure time texp(m, i). The latter has to be used instead of the
frame time as especially pixels close to the gaps between the CCD chips are not exposed
to radiation for the full frame time due to the dithering of the satellite, resulting in an
effective count rate cm rather than Cm with

csim
M (i) =

3∑

m=1

tframe

texp(m, i)
· Am(m, 〈E〉[E−i,Ei+1]) ·

∫ Ei+1

Ei

dE M(m,E)

→M ′(i) = M(i) · (1− p)
csimM (i)

maxj{csimM (j)} . (5.8)

Obviously this model is non-local and should therefore only be fitted over the whole
spectral range. Hanke (2007) introduced another parameter β to re-parametrize the pile-
up model in a way that makes it possible to use it locally. A local pile-up modeling is
desirable especially for local features like emission or absorption lines so that the value
of one bin is not affected by modifications in a distant bin. The exponential scale β is
defined via

(1− p)
csimM (i)

maxj{csimM (j)} ≡ exp (−β · csim
M (i)) with − β =

log (1− p)
maxj{csim

M (j)} . (5.9)

With log(1− p) ≈ −p for small pile-up fractions β is roughly proportional to p.
For a number of counts per pixel in one frame time of C = c · tframe ·∆λ a pile-up reduction
of e−C is expected from Poisson (1837) statistics. In a first approximation the exponential
scale can therefore be estimated as

β0 ≈ tframe∆λ, where ∆λMEG = 3 · 11 mÅ = 2 ·∆λHEG (5.10)

with the ∆λHEG/MEG being the wavelength range covered by one ACIS pixel. The factor
of 3 is introduced because the data processing uses 3 × 3 pixel arrays to determine the
order m of an event. β0 is then used as a starting point for determining the real β. Since
the fractional exposure and the wavelength range per pixel can easily be read out from the
data header files, it is convenient to define the fit parameter such that it is just a scaling
factor to the automatically determined β0. This simplification for the user is implemented
in the ISIS function simple_gpile3.
The continuum itself in the simplest case, i.e., the non-dip spectrum, can be described by
an absorbed powerlaw (Hanke, 2007). The nose-like shape of the data in the CC-diagram
(Fig. 5.8), however, cannot be explained by neutral absorption alone (Hanke et al., 2008).
Pure absorption with increasing column density of the interstellar medium (ISM) would
lead to a track from the (soft) upper right to the (hard) lower left corner of the CC-
diagram (Hanke, 2011). The bend observed during the deepest dip (dark blue) can be
explained by a partial covering model for photoelectric absorption (e.g.; Stelzer et al.,
1999; Ba lucińska-Church et al., 2000)

fc · exp (−NH · σeff(E)) + (1− fc) exp
(
−N ISM

H · σeff(E)
)

(5.11)

where a fraction fc is absorbed by a column density NH intrinsic to the source while the
remaining 1− fc is only absorbed by a constant N ISM

H of the interstellar medium. In case
of pure absorption (fc = 100 %) the track in the CC-diagram is strictly monotonic. Any
track with a smaller covering fraction bends twice with increasing NH, once for each of
the two colors becoming dominated by the uncovered fraction 1− fc instead of the more
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Table 5.2: Parameters of the continuum model for ObsID 3814.

Joint parameters Value

. . . . . . . . . powerlaw . . . . . . . . .

N
[
s−1 cm−2 keV−1

]
1.59± 0.10

Γ1 1.66± 0.04
. . . . . . . . . TBnew(0) . . . . . . . . .

N
(0)
H

[
1021 cm−2

]
6.50+0.15

−0.14

Individual parameters

Data set i
f

(i)
c N

(i)
H c(i)

(%) (1022 cm−2) (%)

‘nondip’ 14± 4 6.8+1.0
−0.9 ≡ 100

‘weak dip’ 54.0± 0.7 2.22+0.9
−0.8 95.4± 0.8

‘dip’ 85.22± 0.26 3.23± 0.05 92.9± 1.0
‘strong dip’ 96.59± 0.08 8.65± 0.10 85.5± 0.9

Notes: The joint parameters are determined via the non-dip spectrum which should not be
affected by any additional absorption altering the apparent photo-index. These joint parameters
are then fixed to the listed values while calculating the individual parameters. For each of the
four data sets the four spectra (± first order of HEG/MEG) are fitted simultaneously).

. . . . . . . . . . . simple gpile3(i).beta [β0] . . . . . . . . . . .

HETG arm ‘nondip’ ‘weak dip’ ‘dip’ ‘strong dip’

HEG−1 1.46± 0.07 1.27± 0.10 0.87± 0.15 ≤ 0.08

HEG+1 1.56± 0.07 1.37± 0.10 0.99+0.14
−0.15 ≤ 0.11

MEG−1 1.029± 0.016 0.99± 0.04 0.88+0.06
−0.07 0.45± 0.13

MEG+1 1.129± 0.013 1.110± 0.027 1.02± 0.06 0.34± 0.12

strongly absorbed part fc (see Hanke et al., 2008, Fig. 5b, for a plot of the tracks for
varying NH and fc).

Table 5.2 lists the fit results for the continuum model

simple_gpile3⊗powerlaw×TBnew(0)×
(
f (i)
c · TBnew(i) · cabs(i) + (1− f (i)

c )
)
· c(i). (5.12)

While the powerlaw and TBnew(0) parameters are determined solely from the non-dip
spectrum, which should be largely unaffected by absorption dips, the partial covering
models are derived individually for the different spectra (index i). TBnew2 models the
neutral absorption (Wilms et al., 2012). cabs models optically-thin Compton scattering
which becomes important for the covering fraction fc due to an additional absorber. As
the Compton scattering depends on the same column density as the neutral absorption,
the column densities of cabs(i) and TBnew(i) are tied to each other during the fit. c(i) is
a flux normalization constant to account for energy independent differences in the flux of
the different dipping states. The fit results are in good agreement with the results of the
partial coverer model in Hanke (2007).

Since the pile up rate strongly depends on the count rate and the count rate is severly
decreased during dipping, keeping the simple_gpile3 parameters fixed to the non-dip
values for all dipping stages would overestimate the effect of pile-up especially during
the strong dip with very low flux. Therefore, these parameters are also fitted separately
for each dipping stage. They are shown in table 5.2 together with the other continuum
parameters. The fact that the pile-up rate is close to zero for the strong-dip spectra
justifies this approach.

2http://pulsar.sternwarte.uni-erlangen.de/wilms/research/tbabs/
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5.2.3 Absorption Lines and Equivalent Widths

With the continuum fixed to the above values, the Si and S regions of each spectrum
can now be examined more closely. The absorption lines of the various charge states are
modeled with Gaussian line profiles. In contrast to Hanke (2011) not only the equivalent
widths but also the line centers are allowed to vary between the different dipping stages.
The equivalent width (EW) of a line is a measure for its line strength that is independent
of the exact line profile. It is defined as the width of a rectangle with the same area
(normalization) as the line profile and the height of the continuum flux, i.e, the equivalent
width is the width of a rectangular area around the line center that emits no light at all
(Karttunen et al., 1987).
Table 5.4 illustrates how the lower ionized lines grow stronger while the absorption from
highly charged ions almost vanishes with increasing dipping, consistent with the theory of
increased absorption due to clumps of denser and colder material crossing our line of sight.
For a visual illustration of this line evolution with dipping see figures 5.9 and 5.10. For a
qualitative comparison of these line centers with the reference lines measured in EBIT see
figures 5.11 and 5.12.
A closer look at the line centers in table 5.3 already reveals that the absorption lines are
pretty close to their rest wavelength. Moreover, the line centers are consistent with each
other (within their uncertainties) during different stages of dipping, implying that the
increased absorption is actually caused by a single compact object. Considering the good
agreement between weak-dip and dip, the somewhat larger deviation of the line centers
in the strong-dip spectrum are probably due to its extremely low number of counts and
therefore rather low signal to noise ratio. This theory is supported by the much better
agreement of the strong-dip lines with the lines observed during weaker dipping in the
spectra of ObsID 8525 (see section 5.3).
Long dashes in the tables indicate lines that could either not be detected and/or not be
constrained during the fit. This issue seems to occur predominantly with the Li-like sulfur
line. The Li-like absorption lines in Cyg X-1 also have the problem that they are very
close to the forbidden He-like line which usually appears as an emission line. Due to the
degeneracy of these lines, the Li-like lines are more likely to be mis-described by the fit
since the He z emission eats away one of its tails, causing the line fit to result in a narrower
line with its line center slightly shifted to higher energies. That the sulfur region generally
has worse statistics and weaker absorption lines can be explained with a hint at table
2.11 in Hanke (2011). This table shows the continuum for three Chandra observations of
Cyg X-1 covering different phases of the binary and indicates that the absorption due to S
is by a factor of 4 to 8 weaker than the absorption due to Si. With silicon being so much
more abundant, line centers, equivalent widths and especially shifts of the C-like S line
have to be taken with much care since it strongly blends with Si Ly β.

5.2.4 Comparison to Laboratory Spectra

Already a qualitative comparison of the EBIT and the Cyg X-1 spectra shows that now the
assumed rest wavelengths of the Si and S Kα spectra agree quite well with the astrophysical
spectra (Fig. 5.11 and 5.12). In the preceding section we found the energies of the Si and
S absorption lines in this observation. What we would really like to know, though, is the
velocity of the material causing the lines. With the definition of the Doppler (1842) shift

v

c
=
Etheo − Eobs

Eobs

=
∆E

Eobs

, (5.13)
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Figure 5.9: Evolution of the silicon lines with dipping stages (non-dip, weak dip, dip and
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Table 5.3: Silicon and sulfur line centers for ObsID 3814.

Ion
Eobs [eV]

non-dip weak-dip dip strong-dip

H-like Sixiv 2005.76± 0.24 2005.3± 0.4 2005.6+0.6
−0.7 —

He-like Sixiii 1865.84+0.25
−0.26 1864.9± 0.5 1865.1+0.5

−0.6 —

Li-like Sixii 1847.1± 0.9 1845.0+0.8
−0.7 1844.7+1.7

−1.3 —

Be-like Sixi 1828.1± 0.8 1828.1+0.6
−0.5 1826.6± 0.7 1823.4+1.6

−1.7

B-like Six 1807.9+2.2
−2.5 1807.4± 1.0 1807.4± 0.5 1806.5± 0.9

C-like Si ix — 1790.3± 0.7 1788.7± 0.6 1788.2± 0.9

N-like Siviii — 1771.6± 1.0 1772.0± 0.5 1771.7+1.0
−0.9

H-like Sxvi 2622.2± 1.0 2622.1+1.4
−1.8 2622.4± 1.9 —

He-like Sxv 2460.4+1.2
−1.0 2460.8+0.9

−1.0 2460.4± 2.3 —

Li-like Sxiv 2437.0+2.0
−1.7 — — —

Be-like Sxiii 2416.4+3.8
−2.8 — 2416.5+2.4

−2.3 —

B-like Sxii 2394+4
−5 2395.3+2.0

−2.3 2392.2+3.0
−2.9 2390.5+2.9

−3.2

C-like Sxi 2375.9+1.3
−2.4 2373.0± 1.8 2370.4± 1.0 2368.9+1.6

−1.7

N-like Sx — 2350.0+2.8
−2.0 2353± 4 2345.3+1.9

−2.0

Table 5.4: Evolution of the equivalent widths of the Si and S lines during the dipping stages

for ObsID 3814.

Ion
Equivalent Width [eV]

non-dip weak-dip dip strong-dip

H-like Sixiv −11.5+1.0
−1.1 −13.9+1.6

−1.7 −14.4± 1.5 —

He-like Sixiii −10.9± 1.1 −13.9+1.8
−1.9 −10.8+1.9

−2.0 —

Li-like Sixii −5.9+1.3
−1.4 −4.5+1.2

−1.4 −3.2+1.7
−1.8 —

Be-like Sixi −2.1± 0.8 −4.4± 1.0 −11.0+1.8
−1.9 −15+6

−5

B-like Six −1.2± 1.0 −7.7+1.9
−1.7 −18.0+2.1

−2.3 −28+6
−4

C-like Si ix — −7.8+1.6
−1.7 −18.2+1.7

−1.6 −27+6
−5

N-like Siviii — −2.6± 1.3 −10.2+1.9
−2.1 −15± 5

H-like Sxvi −6.2+1.3
−0.9 −4.7+1.5

−1.8 −5.4+1.6
−1.5 —

He-like Sxv −3.9+1.1
−1.4 −4.9+1.2

−2.1 −4.8+1.9
−1.8 —

Li-like Sxiv −1.5± 0.9 −1.1± 1.3 — —

Be-like Sxiii −1.8+1.2
−1.4 — −5.0+2.1

−1.9 —

B-like Sxii −1.3+1.2
−1.3 −3.9± 1.6 5.8± 1.9 −13± 4

C-like Sxi −2.8+1.0
−2.0 −6.3± 1.8 −11.6+1.9

−1.8 −14± 5

N-like Sx — −4.0+1.9
−2.2 −4.7+2.7

−2.2 −15± 5
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where positive velocities correspond to a reddening of the spectrum from the emitted Etheo

to the smaller Eobs, we only need to determine the difference between the lines seen in the
Cyg X-1 spectra and the lines in the spectra taken from the plasma considered “at rest”
in the laboratory. The observed energy is already known from the analysis in the previous
section (cf. Table 5.3). Re-writing the Doppler shift in terms of the wavelengths

v

c
=
λobs − λtheo

λtheo

, (5.14)

would require us to know the theoretical centers of the blended lines. For this reason, the
fits are done in the energy space although in astrophysics spectra at the considered energy
range around 2 keV are more commonly examined in wavelength space.

To obtain the shift between the laboratory and the astrophysical spectra, the FAC model
defined in section 4.8 is applied. With it the shift of the Cyg X-1 spectrum with respect
to the theoretical spectrum is determined. As discussed in section 3.12, the uncertainty
in those calculated line energies can be rather high – higher than the expected Doppler
shift. Consequently the FAC model, due to some advantages of handling it as discussed
below, is only used as a link to the laboratory spectra which shall provide the true reference
energies. In table 4.6 the displacement, ∆Eebit, of the FAC calculations with respect to the
measurement is listed for every distinguishable ionization state. A similar table (Tab. 5.6)
shows the same information, ∆Ecyg, for Cyg X-1. ∆E between EBIT and Cyg X-1 is then
just a simple combination of these and can be derived by thinking through a few possible
constellations of their order in energy.

The FAC model is defined such that the resulting energy shift ∆Efac, where the subscript
fac stands for any of the two fitted spectra ebit and cyg, is positive (∆Efac > 0) if the
lines in the fitted spectrum are situated at higher energies than the FAC calculation. If
now, for instance, the Cyg X-1 spectrum is at higher energies than the FAC spectrum
which again is at higher energies than the EBIT spectrum, we know that the Cyg X-1
spectrum is blue shifted, i.e., ∆E < 0. According to the model definition we also have
∆Ecyg > 0 and ∆Eebit < 0. Since the FAC spectrum lies between the EBIT and the
Cyg X-1 spectrum, in this case the absolute values of the shifts have to be added to get
the distance |∆E| = |∆Eebit|+ |∆Ecyg|. The only way to realize this while preserving the
signs of the displacements is by subtracting them from each other such that both virtually
have the same sign. Therefore, keeping the blue shift in mind,

∆E = ∆Eebit −∆Ecyg. (5.15)

Similar reasoning leads to the same result for all possible configurations. Thus, we find
that in all cases the Doppler shift can be expressed as

v

c
=

∆Eebit −∆Ecyg

Eobs

(5.16)

where ∆E{ebit/cyg} > 0 if the FAC line energy is higher than the observed EBIT/Cyg X-1
energy.

During the fit of the FAC model to the astrophysical spectra, contrary to the approach for
the laboratory spectrum it is not assumed that the resolution of the detector stays constant
over the small fit region, i.e., also the FWHM is left free to vary. For satellite spectra this
assumption is not valid because of the variations introduced by, e.g., the effective area of
the mirrors which are not present in the laboratory. The (fixed) parameters listed in Table
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Table 5.5: Difference ∆Ecyg (eV) between line centers measured in Cyg X-1 and calculated

with FAC for ObsID 3814.

Ion
∆Ecyg [eV]

non-dip weak-dip dip strong-dip

H-like Sixiv −0.23± 0.24 0.2± 0.4 −0.2+0.7
−0.8 —

He-like Sixiii −1.02± 0.25 −0.1± 0.5 −0.3+0.6
−0.5 —

Li-like Sixii −2.0± 0.8 −0.4+0.7
−0.8 0.0+1.3

−1.7 —
Be-like Sixi −0.0± 2.0 0.0± 0.5 0.9± 0.8 4.3± 1.6

B-like Six −0.3+2.4
−1.6 0.8± 1.0 0.8± 0.5 1.7± 0.9

C-like Si ix — −1.2± 0.7 0.5± 0.6 0.9± 1.0

N-like Siviii — 1.1+1.3
−1.2 0.8+0.5

−0.6 0.7± 1.0

H-like Sxvi −0.6± 1.0 −0.3+1.6
−1.0 −0.7± 2.0 —

He-like Sxv 0.0+1.0
−1.3 −0.5+1.0

−0.9 0.0± 2.3 —

Li-like Sxiv 0.1+1.6
−1.7 — — —

Be-like Sxiii 0+4
−5 — 0.7+2.3

−2.8 —

B-like Sxii 0+5
−4 −0.1+2.9

−2.6 2.3+2.7
−2.9 4.2+2.9

−3.0

C-like Sxi −4.13.1
−1.4 −1.1± 1.9 1.4± 1.0 3.0+1.7

−1.6

N-like Sx — 1.2+2.0
−3.2 −1.6+3.7

−2.1 6.3+2.2
−2.0

Table 5.6: Doppler shifts v (km s−1) derived from table 5.5 after equation 5.16 for ObsID 3814.

Ion
v [km s−1 ]

non-dip weak-dip dip strong-dip

H-like Sixiv −3± 60 −70± 70 −13± 120 —
He-like Sixiii 170± 50 10± 80 50± 80 —
Li-like Sixii 250± 130 −10± 120 −80± 240 —
Be-like Sixi −30± 130 −50± 90 −190± 130 −750± 260
B-like Six 30± 420 −160± 170 −150± 70 −300± 140
C-like Si ix — 170± 110 −110± 100 −190± 160
N-like Siviii — −160± 210 −100± 90 −90± 170

H-like Sxvi 60± 130 40± 150 80± 220 —
He-like Sxv −30± 140 30± 120 −30± 280 —
Li-like Sxiv −100± 200 — — —
Be-like Sxiii −200± 500 — −200± 300 —
B-like Sxii 0± 500 −20± 340 −330± 350 −560± 370
C-like Sxi 440± 280 70± 240 −250± 140 −450± 210
N-like Sx — −90± 330 270± 370 −730± 270
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5.2 again build the continuum for the absorption lines. Table 5.5 lists the fitted energy
differences and table 5.6 the resulting Doppler shifts.

The spectrum simulated with FAC can, due to its numerical character, very easily be
separated into the contributions of single ionization states, even if lines of two or more
ions blend into each other. It is unlikely that the charge balance in the plasma around
Cyg X-1 is the same as in EBIT during the measurements. With every ion having its
own normalization parameter this difference can conveniently be taken care of. Another
approach to determine the shift between the spectra would be to cut the laboratory spectra
into pieces and convolve the single peaks, which constitute lines already convolved with
the detector resolution of the ECS, with yet another Gaussian in order to smear them out
to fit the HETGs resolution. Especially for the two close lines He-like line z and the Li-like
peak, it is hard to justify where exactly to apply the cut and in some cases like the just
mentioned these lines would also loose their tails. If the tail is missing, the line does not
make for a good model as the fit is strongly determined by the tails of a fit function. Also
lines whose shape is tributed to blends of lines coming from level transitions in different
ions could not be corrected for the different charge balances in the different sources and
might therefore introduce an error to the measured shift.

This reasoning is only to justify the choice between the available tools. Of course, there
are also disadvantages in using the FAC calculations as a reference. But compared to
the problems arising from the alternative approach, they seem to be acceptable for now.
The deficiencies of the numerical calculations with atomic codes in general and with FAC
in particular have been discussed before (Sections 3.12 and 4.8) but are of minor impor-
tance here as they introduce the same error to both fits. A more severe issue is that
the FAC model has been calculated on the basis of collisional ionization and excitation.
This assumption is perfectly valid for a plasma produced in an EBIT. The environment
of Cyg X-1, however, is dominated by photoionizaton and -absorption of the radiation
produced by the accretion process. Photoabsorption and collisional ionization can favor
the population of completely different energy levels in the same ion, changing the shape
of the spectrum. Hence, as “bad” as the description of the measurement through the FAC
model is (cf. section 4.8), its validity with respect to the Chandra spectrum is worse.
Strictly speaking, as it was produced itself through collisional processes, the fitting of the
ECS spectrum to the Chandra spectrum would face the same problem such that this issue
is not a disadvantage of the FAC approach over the spectrum cutting.

Table 5.5 lists the shift of the FAC spectra with respect to the Cyg X-1 spectra fitted on
top of the same continuum as the line centers. Using the above method then the Doppler
shifts are derived for all detected lines (table 5.6). Even with the new atomic data, the
uncertainties in the measured velocities still seem rather high. Comparison with the error
bars of the Doppler shifts of lines with already previously well known rest wavelengths
(e.g., Hanke, 2011, Tab. 2.12), however, imply that the accuracy of the results is at least
as high if not higher than the quoted values in other works. The derived uncertainties can
indeed be ascribed to the error bars already emerging from the simple line fit (Tab.5.3)
rather than the applied method.

With the exception of only a few fluctuations, most of which appear in those lines causing
problems as described in section 5.2.3, the derived Doppler shifts are consistent with zero
and, even more important, with the Doppler shifts of the same line in different dipping
stages. The latter provides evidence for the theory of inhomogeneities in the stellar winds
building clumps of denser, due to self-shielding successively colder and therefore less ionized
material moving as single compact chunks through the surroundings of the black hole.
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Overall the observed absorption lines are basically at their rest wavelengths. With the
free fall velocity

v(r) =

√
GM

r
< v(RS) =

c√
2
, (5.17)

where RS is the Schwarzschild radius, zero Doppler shift either means that the material
causing the absorption is far away from the black hole or is moving perpendicular to our
line of sight. Another characteristic velocity of the system is the projected orbital velocity
of Cyg X-1. In analogy to Eq. 2.24 it can be calculated by substituting the center of mass
(a∗M∗ = aX ∗MX) and the mass ratio q of the two components, and inserting the system
parameters (a∗ sin i = 8.36R� (Gies et al., 2003), Porb = 5.99829 d Brocksopp et al. (1999),
M∗ = 19.16M� and MX = 14.8M� Orosz et al. (2011)):

KX =
2πax sin i

Porb

=
2π a∗ sin i

Porb

· q = 91.26 km s−1. (5.18)

This Keplerian velocity of the black hole is not much higher than the found Doppler shifts.
For some of the lines this velocity is even within the derived uncertainties. So since this
observation was done around phase zero, i.e., in superior conjunction of the black hole
where the black hole moves perpendicular to our line of sight, the observed clumps could
actually be rather close to the black hole. A comparison of the analysis of absorption dips
in observations of other orbital phases could help to get a better hint at these movements
of the clumps.

5.3 ObsID 8525

To cross-check the above findings, the same analysis is also applied to the spectra of ObsID
8525, which is with φ0.02−0.08 also around superior conjunction and should therefore lead to
the same results as ObsID 3814. The observation was performed on 2008-04-18/19 with an
exposure time of 30 ks. The detector setup chosen was similar (with a few improvements)
to the one of 3814 (for details see Hanke, 2011). The hard state of the system was similar
during both observations, as is the morphology of the resulting light curves.

For this observation only the silicon and sulfur lines are analyzed. The cutting into dipping
stages and the description of the continuum is adopted from Hanke (2011, Tab. 2.11). Only
the silicon and sulfur column densities of the warm absorber model are set to zero. This
approach is necessary in order be able to analyze the absorption lines since the purpose
of the warm absorber model is to describe absorption of ionized material and therefore at
least partially accounts for the lines of hour interest. The results are listed in tables 5.7
through 5.10. They are consistent with and confirm the previous findings and also suggest
that the rather large shifts of the strong-dip lines in ObsID 3814 are really due to the low
count rate.
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Figure 5.13: Evolution of the silicon lines with dipping stages (non-dip,weak dip, dip and

strong dip from top to bottom). The four panels show the averaged HEG and MEG ± first order
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Table 5.7: Silicon and sulfur line centers for ObsID 8525.

Ion
Eobs [eV]

non-dip weak-dip dip strong-dip

H-like Sixiv 2006.2± 0.5 2006.2± 0.5 2005.8± 0.4 2006.7+0.7
−0.6

He-like Sixiii 1866.0± 0.5 1865.8+0.7
−0.6 1865.23+0.28

−0.27 1864.8+0.8
−0.7

Li-like Sixii 1846.1± 0.7 1845.7± 0.7 1844.60+0.31
−0.28 1845.8± 1.0

Be-like Sixi 1828.4+1.2
−0.9 1828.5± 0.5 1828.1± 0.4 1828.0± 0.4

B-like Six 1808.8± 1.6 1807.9± 0.5 1807.7± 0.4 1808.0± 0.4
C-like Si ix — 1789.1± 1.2 1789.5± 0.7 1789.5± 0.4
N-like Siviii — — — 1771.1± 0.6

H-like Sxvi 2623.8+1.2
−1.8 2622.2+1.4

−1.3 2623.2± 1.7 2622.4+2.6
−1.0

He-like Sxv 2461.7+1.0
−1.5 2463.9+1.6

−1.7 2460.4+1.6
−1.5 2460.0+1.4

−1.3

Li-like Sxiv — — 2438.3+2.3
−1.7 —

Be-like Sxiii — 2418.9+2.8
−3.1 2417.6+2.0

−2.2 2415.4+2.3
−3.7

B-like Sxii 2395.5+2.6
−3.5 2393.6+2.0

−1.7 2394.2+1.2
−1.3 2393.2+1.8

−1.7

C-like Sxi 2375.1+1.3
−1.2 2375.2+1.9

−2.2 2372.4± 1.0 2374.0± 1.0
N-like Sx — — 2348.0± 1.4 2349.8± 1.5

Table 5.8: Evolution of the equivalent widths of the Si and S lines during the different dipping

stages for ObsID 8525.

Ion
Equivalent Width [eV]

non-dip weak-dip dip strong-dip

H-like Sixiv −12.2+2.2
−2.5 −11.9+1.8

−1.9 −15.5+1.8
−1.9 −9.8+1.7

−1.9

He-like Sixiii −11.6+2.1
−2.3 −10.2+2.2

−2.5 −10.3+1.0
−2.1 −5.9± 1.6

Li-like Sixii −7.4± 2.2 −8.5+2.0
−2.3 −8.8+1.1

−1.2 −8.4+2.6
−2.3

Be-like Sixi −3.2+1.3
−1.8 −7.1± 1.3 −6.7+1.0

−2.5 −8.1+1.3
−1.2

B-like Six −7.5+3.2
−2.2 −11.0+1.8

−1.9 −19.0+1.9
−2.0 −20.3+2.0

−2.1

C-like Si ix — −5.7+2.0
−2.1 −10.32.0

−2.1 −18.8+1.9
−2.0

N-like Siviii — — — −7.6+1.6
−1.9

H-like Sxvi −6.4± 1.9 −4.9± 1.6 −5.6+1.7
−1.6 −4.3+1.3

−2.1

He-like Sxv −8.3± 2.6 −4.7± 1.8 −6.4+2.2
−2.4 −6.4+1.9

−2.1

Li-like Sxiv — — −4.5+1.9
−2.5 —

Be-like Sxiii — −4.4± 2.5 −2.5± 1.8 −4.5+1.8
−1.7

B-like Sxii −4.2± 2.2 −7.7+2.8
−2.7 −8.1+2.4−2.7 −6.9+2.3

−1.9

C-like Sxi −5.4± 1.8 −5.3+2.4
−2.7 −10.2+2.3

−2.2 −111.9± 1.8
N-like Sx — — −5.4± 1.8 −8.4+2.2

−2.0
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Table 5.9: Difference ∆Ecyg (eV) between line centers measured in Cyg X-1 and calculated

with FAC for ObsID 8525.

Ion
∆Ecyg [eV]

non-dip weak-dip dip strong-dip

H-like Sixiv −0.7± 0.5 −0.7± 0.5 −0.3± 0.4 −1.2+0.6
−0.7

He-like Sixiii −1.2± 0.5 −0.9+0.6
−0.7 −0.42+0.27

−0.28 0.0+0.7
−0.8

Li-like Sixii −1.6± 0.6 −1.3± 0.6 −0.07± 0.30 −1.2± 0.8
Be-like Sixi −0.5+1.4

−1.5 −0.4± 0.8 −0.3± 0.5 0.2± 0.5
B-like Six −0.2+1.2

−1.3 0.3± 0.5 0.5± 0.4 0.2± 0.4
C-like Si ix — 0.1± 1.3 −0.3± 0.7 −0.4± 0.4
N-like Siviii — — — 1.3+0.7

−0.8

H-like Sxvi −1.8+1.5
−1.4 0.0+1.0

−1.9 −1.7± 1.8 −1.2+2.0
−2.2

He-like Sxv −1.3+1.4
−1.0 −3.4+1.9

−1.6 0.1+1.5
−1.6 0.5± 1.4

Li-like Sxiv — — −1.8+2.2
−0.8 —

Be-like Sxiii — −1.32.9
−3.0 0± 4 3.0+2.7

−2.3

B-like Sxii 0.5+2.6
−3.5 1.1+1.7

−2.0 0.4+1.2
−1.0 1.4+1.7

−1.9

C-like Sxi −3.5+1.4
−1.5 −3.3+2.2

−2.0 −0.5± 1.0 −1.9± 1.2
N-like Sx — — 3.7+0.5

−0.4 1.6+1.6
−1.7

Table 5.10: Doppler shifts v (km s−1) derived from table 5.9 after equation 5.16 for ObsID

8525.

Ion
v [km s−1 ]

non-dip weak-dip dip strong-dip

H-like Sixiv 70± 90 70± 80 10± 80 140± 100
He-like Sixiii 200± 80 150± 100 70± 50 −3± 111
Li-like Sixii 180± 100 140± 90 −60± 50 120± 130
Be-like Sixi 170± 240 20± 130 1± 70 −90± 80
B-like Six 20± 200 −70± 80 −100± 60 −60± 70
C-like Si ix — −50± 210 20± 120 40± 60
N-like Siviii — — — −180± 120

H-like Sxvi 200± 170 −3± 165 200± 200 140± 240
He-like Sxv 140± 150 400± 210 −30± 190 −80± 170
Li-like Sxiv — — 140± 180 —
Be-like Sxiii — 60± 360 −100± 500 −480± 310
B-like Sxii −100± 400 −170± 240 −90± 140 −210± 220
C-like Sxi 370± 180 350± 260 −2± 137 170± 250
N-like Sx — — −400± 60 −130± 210



Chapter 6

Conclusion and Outlook

There is a theory which states that if ever anyone
discovers exactly what the universe is for and why it is

here, it will instantly disappear and be replaced by
something even more bizarre and inexplicable.
There is another theory that this has already

happened.

Douglas Adams, Restaurant at the End of the Universe

In this work the Kα spectra of silicon and sulfur have been measured with the LLNL EBIT-
I and the ECS. The resulting lines have been identified via calculations using FAC and
compared with the theoretical predicitions of Palmeri et al. (2008). The largest uncertainty
in the identification process is that the simulated spectra are not completely self-consistent
because of the unknown charge balance in the trap and therefore (and because of numerical
issues) do not have to resemble an accurate description of the ‘real’ world. To quantify the
difference between theory and experiment, the calculated line centers have been converted
into a model that can easily be fitted to the measured spectra. The shift between theory
and experiment derived that way is on average 0.35 eV (Si) and 0.48 eV (S), respectively.
One of the major problems with the FAC fitting ansatz is that, as can be seen in Fig. 3.6
by comparison of the Palmeri et al. (2008) and the FAC energy levels, the assumption that
the relative energy differences in an ion are correctly modeled by the codes is probably
invalid.

The same model has also been used to estimate the Doppler shift of silicon and sulfur lines
whose charge balance decreases during the event of an absorption dip in two Chandra
observations at orbital phase φ ≈ 0 of the HMXB Cyg X-1. We find that the Cyg X-
1 lines are basically not shifted with respect to their rest wavelengths. Neither does the
shift change between different dipping stages nor between different ionization states. These
results are consistent with the theory of the onion-like structure of the clumps in the wind
preserving lower charge states due to self-shielding effects against the ionizing X-radiation
from the accretion process.

From the purely atomic physics point of view there is much that can be done and would be
interesting for the future: So far a general lack of experimental K vacancy level energies,
except for the He-, Li- and sometimes Be-like isonuclear sequences, severely restricts the
possibilities of fine-tuning the numerical codes (Palmeri et al., 2008). With the new results
and even higher resolution measurements in planning, the next step in this direction can
be taken. To obtain better resolution, measurements using a crystal spectrometer can be
carried out. Another possibility would be to go to an X-ray laser facility like the Linac
Coherent Light Source (LCSL) at the Stanford Linear Accelerator Center (SLAC). With a
high intensity, high resolution photon beam ions trapped, e.g., in an EBIT can be excited
and resonant lines measured with very high precision. The next step would then be to
measure cross sections and life times to provide a handle to directly utilize the measured
line centers without workarounds as the FAC model.

Also, improvements of the FAC model have to be made. Applying the collisionally ionized
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plasma to both, the laboratory/EBIT spectra and the photoionized absorption/emission
lines of astrophysical spectra like the ones from Cyg X-1 cannot yet be the best solution.
Especially the strong blend of the Be-like lines with some of the Li-like lines (compare
figures 3.8 and 3.9), which only become intense lines due to the collisionally dominated
ionization and excitation, causes trouble in trying to constrain the shift of the Be-like peak
in the astrophysical spectra.

To improve the uncertainties on line centers and Doppler shifts in the astrophysical spectra,
a better treatment of P Cygni line profiles can contribute its fair bit. A phase dependency
study of the Doppler shifts, i.e., applying the analysis method of the previous chapter to
other observations, might help to constrain the properties, the origin and the habitat of
the clumps in the stellar wind even more.

So far the analysis of the Chandra observations average over the structure of different
clumps. Therefore, all conclusions we derive from this analysis have to bear in mind that
we’re only averaging over the structure. For example, the derived Doppler shifts have
contributions of several clumps which could move with different speeds independently
of each other. It would, however, be interesting to see how a single clump behaves.
Unfortunately, the count rates in the observations are too low to analyze every single
absorption dip in the lightcurves separately. At least it would be worth a try to isolate
the pronounced deep absorption dips with a long duration.

The application of the method to derive Doppler shifts used in this thesis is not restricted
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to the case of Cyg X-1. In fact, Liedahl & Brown (2008) proposed measurements of the
silicon X-ray spectra in order to apply them to the neutron star HMXB Vela X-1 and
build a velocimeter to probe the properties of the stellar wind. A phase dependent study
of the stellar wind in this system using Chandra observations has already been done by
Watanabe et al. (2006). Due to the lack of atomic physics data, their examination is based
on Monte Carlo simulations, though. Figure 6.1 shows a comparison between the Vela X-1
silicon region at phase φ ≈ 0.5 (Chandra ObsID 1927) and the EBIT spectra.



I
f we were to go to the sun and to
bring some portions of it and analyze
them in our laboratories, we could
not examine them more accurately
than we can by this new mode of
spectrum analysis.

Warren de la Rue (1861) about
the invention of spectroscopy
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Appendix B

Rate Equations

In section 3.11 it was outlined how to solve the rate equations using matrix notation. Some
more details of the set of rate equations, including the matrix for the matrix equation,
shall now be shown in this appendix. We start with repeating the general rate equations
of Bautista & Kallman (2001)

n0
i

( ∑

j 6=i
Rij

︸ ︷︷ ︸
losses to levels

in same ion

+
∑

q>0

Γ0→q
i

︸ ︷︷ ︸
losses through

photo-ionization

+ Neα
−1
i

︸ ︷︷ ︸
losses through
recombination

+NeQ
0→1
i

︸ ︷︷ ︸
collsional
ionization

)
=

=
∑

k 6=i
n0
kRki

︸ ︷︷ ︸
gain from levels

in same ion

+
∑

q>0

∑

l

n−ql Γ−q→0
li

︸ ︷︷ ︸
gain from

photo-ionization

+Ne

∑

l

n−1
l Q−1→0

li

︸ ︷︷ ︸
gain from

collisional ionization

+
∑

s

n1
sNeα

0
si

︸ ︷︷ ︸
gain from

recombination

. (3.82)

Here, subindices denote transitions between energy levels of the same ion while superindices
indicate transitions between ionic states. A superindex of 0 indicates the currently consid-
ered ionic stage, −1 and +1 (±q) denote an ion one (q) times less or respectively higher
ionized. The left hand side of the equation collects all processes causing a specific level to
loose some of its population to other levels or ions. The right hand side in contrast sums
over all gains to this same level.
To keep the matrix legible and emphasize its patterns, the processes described in the rate
equations are hidden in a shorthand notation of their transition probabilities:

• inner-ion transitions: P k
ij = Rij = neq

e
ij + npq

p

ij + Aij + UνBij

covering collisional (de-)excitation through electrons (e) and protons (p), sponta-
neous (Aij) and by a photon field Uν stimulated (Bij) emission and absorption

• transitions between neighboring ions:

P k−1→k
ji = Γk−1→k

ji + neQ
k−1→k
ji (photo- and collisional ionization)

P k+1→k
ji = neα

k
ji (two-body recombination)

• transitions to higher ionization states: P l→k
ji = Γl→kji (for l < k)

via photoionization followed by a cascade of autoionization

• losses through all of the above processes: Lki =
∑

j 6=i P
k
ij +

∑
q>k Γk→qi + neα

k−1
i +

neQ
k→k+1
i .
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Montpellier: Mémoires de la section des
sciences 1, 333
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