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Image on the Titlepage: Simulation of an accretion disk
as seen by a distant observer under an inclination angle of
θo = 80◦. The disk is rotating around a maximally fast spin-
ning black hole. The color scheme reflects the direction of the
energy shift, i.e., red illustrates a shift to lower energies and
blue a shift to higher energies, respectively. The blue shifted
left part of the disk moves towards the observer, whereas the
right part recedes from the observer. Note how the light bend-
ing serves to virtually flip the disk behind the black hole up-
wards. The asymmetries are due to relativistic light bending.
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DEUTSCHE ZUSAMMENFASSUNG

Obwohl Schwarze Löcher sehr exotische Objekte sind, können sie durch nur zwei Paramter
beschrieben werden: Ihre Masse und ihren Spin. Wie in dieser Arbeit gezeigt wird, ist die
Bestimmung des Spins eine schwierige Aufgabe, deshalb gibt es bis jetzt nur eine Handvoll
verlässlicher Messungen. Auch wenn die Bestimmung schwierig ist, spielt der Spin eines
Schwarzen Lochs in Theorien zur Galaxienentwicklung und der Entstehung von extrem rela-
tivistischen Jets eine wichtige Rolle. Die Verdrillung der Raumzeit durch das sich drehende
Schwarze Loch spiegelt sich im beobachteten Photonenspekutrm wieder, weshalb man durch
spektrale Analyse daraus die Rotation bestimmen kann. Diese Arbeit konzentriert sich auf
“relativistisch verbreiterte Emissionslinien” in den Spektren zur Messung des Spins. Diese
Emissionslinien entstehen durch Reflektion harter Röntgenstrahlen, die auf die Akkretions-
scheibe strahlen und dort fluoreszente Emission hervorrufen. Durch die relativistische Rota-
tion der Akkretionsscheibe bekommt die dünne Emissionslinie eine breite und asymmetrische
Form. Diese sehr charakteristische Form hängt von unterschiedlichen Paramtern des Systems
ab, unter anderem der Inklination, dem Emissionort der harten Röntgenstrahlung, und dem
Spin des Schwarzen Lochs.

In dieser Arbeite stelle ich die grundlegenden Gleichungen der Allgemeinen Relativitäts-
theorie vor, die rotierende Schwarze Löcher in der Kerr Metrik beschreiben. Mit den daraus
abgeleiteten Gleichungen können die Bewegung der Teilchen in einer einfachen Akkretions-
scheibe und Photonenbahnen nummerisch beschrieben werden. Um die relativistischen Effekte
die diesen Gleichungen zu eigen sind besser zu veranschaulichen wurden Bilder einer Akkre-
tionsscheibe aus der Sicht eines entfernten Beobachters simuliert. Die Analyse der Linienpro-
file zeigt, dass sich bei Änderung der Inklination, des Intensitätsprofils der Akkretionsscheibe
oder des Spin, sich die Linienform charakteristisch ändert und deshalb theoretisch diese Pa-
rameter aus Beobachtungen bestimmt werden können. Außerdem wurden Systeme unter-
sucht, in denen die Akkretionsscheibe entgegen dem Schwarzen Loch rotiert. Emissionslinien
solcher Systeme sind systematisch schmäler, obwohl sie trotzdem als breite Linien detektier-
bar sind. Simulationen zur Beobachtbarkeit ergeben, dass es zukünftigenWeltraumteleskopen
wie dem International X-ray Observatory möglich sein wird negativen Spin zu detektieren. Bei
dem Vergleich bekannter Modelle zur Berechnung breiter Emissionslinien zeigen sich größere
Unterschiede: Wohingegen das laor Modell größere Probleme hat die korrekte Linienform
vorherzusagen, berechnet das kyrline Modell ohne Probleme exakte Linienprofile. Da keines
der verfügbaren Modelle negativen Spin berücksichtigt, wurde das rellineModell erstellt. Es
wurde dabei ein flexibler Ansatz mit Greens Funktionen benutzt, der es erlaubt eine beliebige
Radial- undWinkelabhängigkeit der emittierten Strahlung zu benutzen. Mit den numerischen
Techniken zur Berechnung der Linienformen wurde außerdem eine Quelle der harten Rönt-
genstrahlung auf der Rotationsachse des Schwarzen Lochs untersucht. Die Simulation er-
gab, dass die Photonenbahnen umso stärker auf die Akkretionsscheibe fokussiert werden, je
niedriger die Quelle der primären Strahlung ist. Des weiteren werden die Photonen um ein
Vielfaches ihrer Energie verschoben werden. Außerdemwurde das rellineModell verwendet,
um eine Beobachtung von Cygnus X-1 zu analysieren. Die vorläufigen Ergebnisse deuten auf
ein schnell rotierendes Schwarzes Loch hin.
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ABSTRACT

Although black holes are very exotic objects, they can be described by only two parameters:
Their mass and their spin. As will be demonstrated in this work, determining the spin of
black holes is a difficult task. That is why only few trustworthy measurements exist up to now.
Despite all difficulties in detecting it, the spin of a black hole might play an important role in
explaining yet not fully understood effects like galaxy evolution or the formation of the most
powerful jets. Using the signature that the twisted strong gravity imprints on photons, which
are emitted in the vicinity of the black hole, the spin can be determined by spectral analysis.
This work focuses on determining the black hole’s rotation via the spectral features of “broad
emission lines”. These emission lines are created when hard X-rays irradiate the accretion disk
and induce fluorescent emission of atoms in the disk. Due to the relativistically fast rotation of
the accretion disk and the effects of strong gravity, the intrinsically narrow emission line gets
broadened and asymmetric. This very characteristic shape depends on several parameters
such as the inclination of the system, the location of the hard X-ray source or the spin of the
black hole.

In this work I present the basic equations for rotating black holes by solving General Rela-
tivity in the Kerr metric. Employing the derived relations, the motion of particles in a simple
accretion disk and photon trajectories are calculated, using numerical techniques. In order
to illustrate the relativistic effects inherent in the equations, images of an accretion disk as
seen by a distant observer are simulated. Interpreting the calculated line profiles, it is shown
that varying the inclination angle, the intensity profile of the disk, or the spin of the black hole
strongly changes their shape and hence would in principle allow to determine all these parame-
ters from observation. Motivated by galaxy evolution models and theories explaining the most
powerful jets, the case of “negative spin”, i.e., a counterrotating accretion disk, is analyzed.
Emission lines from negatively spinning systems will be narrower, but nevertheless detectable
as broad emission lines. Observability simulations show that future X-ray satellites like the
International X-ray Observatory will be able to detect systems with negative spin. A compar-
ison of popular models for calculating these line shapes shows a large discrepancy: Whereas
the commonly used laor model has major problems in predicting the correct line shape, the
kyrline model easily produces accurate profiles for all parameter combinations. As none of
the available models is capable of calculating emission lines for systems with negative spin,
a new model, relline, was implemented. A more flexible approach using Green’s functions
was chosen, which allows to take an arbitrary angular and radial dependence of the emitted
radiation into account. Additionally, the number of precalculated values is reduced by making
use of strong interpolation. Employing the numerical techniques developed for calculating the
line profiles, a hard X-ray source located on the rotational axis of the black hole, i.e. the “lamp-
post” geometry, is analyzed. It is shown that the simulated photon trajectories are focused
more strongly onto the accretion disk for decreasing height of the source and are shifted to
several times their energy. Furthermore the rellinemodel was used to analyze simultaneous
XMM-Newton and RXTE observations of Cygnus X-1. Preliminary results suggest a rapidly
rotating black hole.
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CHAPTER 1

INTRODUCTION TO BLACK HOLE

PHYSICS

Black holes belong to the most fascinating and exotic objects of the Universe. Although they
have only been accepted to exist recently, they were first predicted almost a century ago.
Shortly after Albert Einstein published his theory on General Relativity in 1916, Schwarzschild
(1916) found the first solution for it. It describes the gravitational field of a point mass. The
most interesting part of this solution is the existence of a region around this central point,
where the effect of gravity is so strong that not even photons can escape beyond it. As this
implies that nothing else, no information which ever gets beyond this radius, can escape, it
is called the “Event Horizon” and the object itself a “Black Hole”. The horizon scales linearly
with the mass contained inside this radius, also called “Schwarzschild radius”, according to

rS=
2GM

c2
≈ 3km

M

M⊙
, (1.1)

where M⊙ is the mass of our Sun. Hence, it is in principle possible for any object to become a
black hole, one only needs to find a way to compress it to a size smaller than its event horizon.
For our Sun this would imply squeezing it to a radius of 3 km, which is only 0.0004% of its
current size. Thus it is understandable that people were doubtful about the existence of such
black holes in our Universe.

The first black hole was not discovered before people began observing the sky with X-ray
detectors. The reason as we know now is simple: Some black holes are not “black”, but emit
X-rays due to a process called “accretion”. How this process works will be explained in Sec. 1.2.
As our atmosphere is not transparent for X-rays, people needed to find a way to bring the de-
tectors in large heights to be able to observe X-rays. The first black hole, Cygnus X-1, was
observed more than 40 years ago with Aerobee rockets (Bowyer et al., 1965), but without iden-
tifying it as such an object. First hints on its true origin came from balloon experiments by
Dolan (1970), who discovered variabilities in flux on extremely short timescales. But in order
to really quantify this behavior, the first X-ray satellite UHURU (Giacconi et al., 1972) was
needed, which provided the first long-term observations of the X-ray sky. From the fact that a
large amount of the flux was observed to vary on 70ms timescales, Oda et al. (1971) calculate
that the emitting region is smaller than 1 Astronomical Unit1 (AU). Because the pulsations
were persistent, they concluded that rotation has to be the driving mechanism for these varia-
tions. Therefore Oda et al. (1971) suggested that the radiation has to originate from a rapidly

1 1AU≈ 1.5 ·108km
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1 Introduction to Black Hole Physics

rotating “X-ray star”, containing either a neutron star or a black hole, as any star would have
to collapse due to such an extreme rotation. Still many uncertainties remained, such as the
identification of the optical counterpart of the X-ray source feeding it with energy. Radio mea-
surements of Cygnus X-1 determined its position more accurately than X-ray observations
(Braes & Miley, 1971; Hjellming & Wade, 1971) and allowed to identify the optical companion
by extensive optical monitoring (Murdin & Webster, 1971; Bolton, 1972) to be HDE226868.
With radial velocity measurements of the companion star, Webster & Murdin (1972) finally
identified the whole system to be a spectroscopy binary and the X-ray source to have at least
twice the mass of the Sun. Based on these results, the authors speculated that this source
might indeed be a black hole. In the following years this picture of Cygnus X-1 slowly got
accepted by the astronomical community (see, e.g., Shipman, 1975). Thanks to modern space
telescopes like Chandra, XMM-Newton and Suzaku, many black holes are nowadays known
and most astronomers consider their existence to be proven.

1.1 DIFFERENT APPEARANCES

Although it is stated above that any mass compressed strongly enough can become a black hole,
there are mainly two different kinds of black holes known. This can simply be explained with
the enormous necessary for creating black holes, making it hard to find a suitable mechanism.
Galactic black holes (GBHs), like Cygnus X-1, usually have only a few solar masses. They are
created, when a massive star explodes in a supernova at the end of its life. The GBHs are
mainly observed in binary systems, i.e., they orbit a companion star, which feeds them with
matter they can accrete. Additionally, both types of black holes can also be seen indirectly
when they pass in front of a luminous background object. In this case the black hole acts
as a “gravitational lens” and distorts the image of the background source, as the photons are
deflected when passing by close to the gravitating object (Einstein, 1936). The distorted image
allows to derive properties of the lensing object, i.e., the black hole in this case.

The other group of black holes are called the supermassive black holes (SMBHs), as they
are found to have a million to billion times the solar mass. The black hole at the center of our
Galaxy, identified with the radio source Sgr A*, belongs to this group. All of the SMBHs have
been found in the center of galaxies. Some of these black holes exhibit a bright high-energy
output, and are therefore called Active Galactic Nuclei (AGN). In contrast to black holes like
Sgr A*, these are usually very bright all over the electromagnetic spectrum from radio to TeV
energies and can be observed even at very large distances. How SMBHs are created is not as
well known as for their galactic companions. At least there is strong evidence that the mass
of the black hole scales with luminosity of the host galaxy’s bulge and therefore the formation
and evolution of the galaxy and the black hole is closely linked (Ferrarese & Merritt, 2000).
As the most luminous AGNs are found at redshift z ≈ 2 and not today (Richards et al., 2006)
and not many candidates for intermediate mass black holes are known, a linear hierarchical
growth from stellar mass black holes to SMBH seems to be unlikely. Either the SMBHs holes
are formed from GBHs in runaway processes of different kinds (Rees, 1984; Begelman et al.,
2006) or the deep gravitational potentials of dark matter clumps, originating from density
fluctuations after the Big Bang, trigger the formation of supermassive black holes. Recent
simulations like the “Millenium Simulation” (Springel et al., 2005) result at least in universes
with structures very similar to our own, by simulating the cosmic dark matter evolution after
the Big Bang.

Despite their huge difference in mass, the GBHs and the SMBHs have a lot in common (see
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Accretion

Fig. 1.1: An artist’s impression of an AGN (left) and a GBH (right). It illustrates the similarity
between these two objects, although the mass and therefore the length scales are a million
times greater in the left image. (Credits: http://chandra.harvard.edu/ )

Fig. 1.1 for an illustration). First, they are described both by the same mathematical solution
of Einstein’s Field Equation. Moreover the “no-hair theorem” of General Relativity predicts
that black holes can be described by very few parameters, namely only the mass, the spin,
and the electric charge (Carter, 1971; Misner et al., 1973). As our Universe is observed to be
almost electromagnetically neutral, the only two parameters that characterize a black hole
are its mass and its angular momentum. Therefore the largest apparent difference between
the galactic and the supermassive black holes is a (large) factor in mass2. But as the solution
is valid for both types, we would not expect the physics and the processes in these objects to
differ. A greater mass of the black hole only implies that the event horizon grows by the same
factor. It is expected that the variability timescales are larger by an equal factor. Hence, we
would expect average spectra of GBHs and SMBHs to be very similar. Clearly, there exist
some effects (e.g., warm absorbers in AGNs or wind from the companion star in GBHs) only
due to the different environment in binary systems and active galaxies, but in general, the
same effects are observed.

1.2 ACCRETION

The process of accretion is responsible for the energy release in GBHs (Shakura & Sunyaev,
1973) and AGN (Rees, 1984). The following facts and more details can be found, e.g., in
Frank et al. (2002). In the process of accretion, matter from the environment or a compan-
ion star falls onto the black hole and gains potential energy. For black holes in binary systems
the mass originates usually from a companion star. Although most of the facts explained in
the following are valid for accretion in binary systems in general, i.e., also for compact objects
such as neutron stars or white dwarfs, we will focus on black holes systems, as this thesis
focuses especially on the effects in these systems. The detailed behavior depends on the type
of the system. In binary systems with a low mass star, the low mass X-ray binaries (LMXB),
the mass usually just flows to the compact object via the Roche-Lobe overflow when the star’s
radius gets large enough. For high mass X-ray binaries (HXMB), the companion star is more
massive and can develop a strong stellar wind, which is then accreted by the compact object.

2The effects of the spin of a black hole will be treated in detail in Sec. 1.3.
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1 Introduction to Black Hole Physics

Fig. 1.2: Different geometries for the source of hard X-rays: A corona of hot electrons around
the inner parts of the disk (left panel) or the base of a relativistic jet (right panel). The hard
X-ray source is drawn in blue and the accretion disk in red.

As the gravitational potential is very deep, the amount of energy released can be up to 30%
of the rest mass of the particle (Thorne, 1974). Additionally the matter usually has angular
momentum and therefore cannot fall directly onto the black hole, but forms a so called “accre-
tion disk” around it. In fact, if the matter would be cold and at initially at rest, it would fall
directly into the black hole without any energy release, making it impossible to observe such
a system (Zeldovich & Novikov, 1971). In order to be accreted, the angular momentum has to
be transported outwards. Magneto-Hydrodynamic simulations show that shear forces due to
small magnetic fields and turbulences in the disk might be able to create an effective viscosity
(see, e.g., Krolik, 1999). Due to this viscous interaction in the disk, the matter is able to spiral
inwards slowly. This can heat up the disk to million degrees of Kelvin, which means most of
its energy is radiated in X-rays.

From the viscous heating of the accretion disk due to the inspiraling matter, a stretched
black body spectrum would be expected, as the temperature for an optically thick disk de-
creases with r−3/4 (Shakura & Sunyaev, 1973). Observations show that a component in the
hard X-rays usually dominates the spectrum. The shape resembles a power law E−Γ with the
photon index Γ and an exponential cutoff at high energies. Such a contribution could be cre-
ated by up-scattering of the soft thermal photons by inverse Comptonization in a corona of
hot electrons (Sunyaev & Trümper, 1979). The corona is assumed to be enclosing the inner
regions of the accretion disk. The cutoff originates at the point where the photon energies
are close to the temperature of the hot electrons, and hence cannot be supplied with more
energy (Titarchuk & Hua, 1995). Alternative possibilities to explain the hard X-ray spectrum
is that it originates from the base of a jet, the relativistic outflow seen in GBHs and AGN
(Markoff & Nowak, 2004; Markoff et al., 2005). The different geometries of the system in the
case of a hard X-ray source in form of a corona or a jet base are illustrated in Fig. 1.2. Chapter 5
discusses the model of the jet base in greater detail.

Some of these hard X-rays, either from the corona or a jet-base, can now irradiate the rel-
atively cold accretion disk. Depending on the ionization of the disk, this leads to a spectrum
of several emission lines. Figure 1.3 shows the result of a Monte Carlo simulation of a spec-
trum from a neutral disk which is irradiated by photons, distributed according to a power
law. Higher ionized disks show less emission features and stronger absorption edges up to no
signatures at all for fully ionized disks (Ross et al., 1999; Ross & Fabian, 2007). Due to the
large abundance of Fe and its fluorescent yield, the Fe Kα transition with an energy of 6.4 keV
is usually the strongest (Reynolds & Nowak, 2003) and therefore often the only emission line
detected in the X-ray spectrum.
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The Spin of a Black Hole

Fig. 1.3: A Monte Carlo simulation of a spec-
trum from a neutral disk which is irradiated by
photons distributed according to a power law.
The figure is taken from Miller (2007), who
adapted it from Reynolds (1996).

1.3 THE SPIN OF A BLACK HOLE

The X-ray photons are emitted very close to the black hole, where the temperature is highest.
Hence the special characteristic of spacetime is imprinted in the photon spectrum by curved
trajectories and shifted energies. As General Relativity (GR) tells us how the spacetime should
be curved, we are in principle able to look for deviations from its predictions and thus test the
theory (Reynolds & Nowak, 2003). Up to now, GR is only tested for small curvature, i.e. only
minor changes to flat spacetime (see proceedings of the 261th Symposium of the IAU3).

On the other hand, if we assume that General Relativity is also valid for strong curvature,
we can learn more about the black hole itself by analyzing photons emitted close to the black
hole. In the solution by Schwarzschild (1916), the mass is the only free parameter. Varying
it does not alter the actual shape of spacetime, but can be interpreted as only changing the
length scales. Hence we need to analyze a different parameter of the black hole, which actually
deforms spacetime. It has already been stated that besides its mass, the second important
parameter of an astrophysical black hole is its spin. Spinning black holes are described by
the more complicated Kerr (1963) solution of General Relativity. A detailed description of the
specialties of the metric, including equations for photon and particle orbits, is presented in
Chap. 2. In order to quantify the value of the spin, the dimensionless spin parameter a= J/M
is commonly used, where J is the angular momentum of the black hole. In principle it can
range from a=−1 (maximally negatively spinning) to a= 1 (maximal positive spin). Negatively
spinningmeans that the accretion disk is counterrotatingwith respect to the black hole. Hence,
such systems will often be called to have “negative spin” in the following. Section 1.3.3 deals
with the question if such systems really exist and why their existence might be important.

Taking into account the black hole’s interaction with thermal photons from the accretion
disc, its spin is restricted to a≤ amax < 1 as capturing photons with negative angular momen-
tum (with respect to the movement of the disc) becomes more likely for increasing a and thus
prevents a spin up to the extreme value of a = 1 (Thorne, 1974). Assuming that a negatively
spinning system is created by flipping the spin of a system with a > 0 (see Sec. 1.3.3 for a

3http://journals.cambridge.org/action/displayIssue?jid=IAU&volumeId=5&seriesId=0&

issueId=S261
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1 Introduction to Black Hole Physics

motivation) sets the lower limit of the spin at a≥−amax, as infalling matter from the counter-
rotating disc decreases the absolute value of the spin with time. We choose amax = 0.998, which
has been calculated by Thorne (1974) and is commonly used.

With increasing absolute value of the spin, spacetime is twisted and very close to the black
hole even dragged with the rotation. The inner regions of the accretion disk and photons
passing by close to the event horizon are affected by this deformation. Methods for measuring
the spin are explained in the following.

1.3.1 MEASURING THE SPIN

In general, there are two methods to infer the spin of a black hole from spectroscopic anal-
ysis. One possibility is to analyze the thermal X-ray continuum. It makes use of the radial
luminosity dependence L(r) of the accretion disk. This function was analytically derived by
Novikov & Thorne (1973) for a non-rotating black hole, and Riffert & Herold (1995) extended
it to rotating black holes by introducing correction factors to the previous solution. Modeling
the radial dependent effects of the Kerr metric allows to draw conclusions about the spin. For
more details see (McClintock et al., 2006) and references therein.

The second approach for measuring the spin is using the relativistically broadened emission
lines (such as the Kα line), seen in many X-ray spectra (e.g. Fabian et al., 1989; Tanaka et al.,
1995; Martocchia et al., 2002b; Miller et al., 2004). Although being a narrow line in the rest
frame of the disk, the extremely fast rotation of the accretion disk and the effects of spacetime
render the fluorescent emission line to be broad and asymmetric in the observer frame. Hence
the spin of the black hole is encoded in the shape of this “broad emission line”. The value of
the spin can then be estimated by comparing the observed line profile carefully with predic-
tions of theoretical models. As the shape also depends on the emissivity, i.e., the radial and
angular dependence of the emitted intensity Ie(re,θe), and the inclination of the surrounding
accretion disk, broad emission lines have a very high diagnostic power. Figure 1.4 shows the
best observed broad emission lines for a GBH and an AGN.

This thesis focuses on the method of broad emission lines for the spin measurement and its
theoretical modeling. Therefore line profiles are calculated with great precision and compared
to commonly used models for data analysis. As none of these models covers a retrograde rota-
tion of the accretion disk with respect to the black hole, i.e., a black hole with negative spin, a
new model code based on a Greens function approach is developed (Chap. 4).

1.3.2 CURRENT OBSERVATIONAL CONSTRAINTS

The skew-symmetric, broadened Fe Kα emission lines have already been seen in many AGN
such as the Seyfert galaxyMCG−6-30-15 (Tanaka et al., 1995; Wilms et al., 2001; Miniutti et al.,
2007), 1H0707−495 (Fabian et al., 2009), and others (Nandra et al., 2007), galactic BHs such
as GX 339-4 (Miller et al., 2004; Caballero-García et al., 2009), Cyg X-1 (Fabian et al., 1989;
Miller et al., 2002), or GRS 1915+105 (Martocchia et al., 2002b; Blum et al., 2009), and neu-
tron star systems (di Salvo et al., 2009; Cackett et al., 2008, 2009; Shaposhnikov et al., 2009).

Figure 1.5 shows a compilation of published spin measurements of black hole systems4, also
including the method by fitting the thermal continuum. If the measurements are to be trusted,
all values of the spin are possible and almost equally likely. In some cases there exist more
than one spin measurement for one source, which even contradict each other. A special case is

4Neutron star systems are assumed to have spins close to zero, due to the magnetic coupling of neutron star and
accretion disk.
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Fig. 1.4: The best signal to noise observations of a relativistic iron line in a X-ray binary
(Cyg X-1, left) and an AGN (MCG−6-30-15, right). Cyg X-1 was observed for 17.4 ksec with
XMM-Newton (Duro et al., in prep.) and the plot of MCG−6-30-15 shows a Suzaku and a XMM-
Newton observation and was taken from Miller (2007), adapted from Miniutti et al. (2007)
and Reeves et al. (2006). In order to emphasize the line profile, the spectrum was fitted by
excluding the iron line region in both plots.

GRS 1915+105: Three different measurements of the spin, which range from 0 < a < 1, exist
in literature, although recent developments (McClintock et al., 2010) seem to favor a rapidly
spinning black hole. This and other examples in the table shed some doubt on the exactness
of the spin measurements. At least the formally small uncertainties point at the presence
of systematic effects in the line measurements due to the high count rate of Galactic sources
(Yamada et al., 2009; Done & Diaz Trigo, 2010) and due to the uncertainty of the parameters of
the underlying continuum (e.g., Ross & Fabian, 2007; Reynolds & Fabian, 2008). On the other
hand there are examples like MCG−6-30-15, where the spin measurement is more robust. By
using a sophisticated analysis of the underlying continuum and assuming no emission between
the inner radius of the accretion disk and the event horizon, Brenneman & Reynolds (2006)
could show that MCG−6-30-15 harbors a fast spinning black hole and explicitly ruled out the
case of a slowly or negatively rotating black hole.

Although the amount of measurements show that spin can be measured, the discrepancy
between the results points towards the issue that different models might predict different
shapes of the relativistic emission line. For example, many observations still use the laor

model (Laor, 1991), which calculates the line profile by interpolating a sparsely sampled table
for a = 0.998. Therefore Sec. 3.5 is dedicated to the comparison of currently used models for
relativistic emission lines to new simulations of highly resolved line profiles.

1.3.3 NEGATIVE SPIN

Observations of AGN in the XMM-Newton and Chandra deep fields prove that broadened iron
lines already occured at high redshifts, z, (Comastri et al., 2004; Streblyanska et al., 2005, but
see Corral et al. 2008). Although recent studies seem to exclude that these broad lines are
a common feature (Longinotti et al., 2008), observations of such lines could therefore be used
to study the expected evolution of black hole spin with z. For example, strong changes in
amplitude and direction for the central black hole are predicted in stochastic evolution models

9
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Source Spin (disk) Spin (line)

M33 X-7 0.77±0.05

LMC X-1 0.90+0.04−0.09
LMC X-3 < 0.8

−0.03
GS 2000+25 0.03

GS 1124−68 -0.04

4U 1543−47 0.7–0.85 0.3±0.1

GRO J1655−40 0.65–0.8 0.98±0.01

0.93

GRS 1915+105 0.98–1.0

0–0.15

∼ 0.7

0.998

XTE J1550−564 < 0.8 0.76±0.01

XTE J1650−500 0.79±0.01

GX 339-4 0.94±0.02

SAX J1711.6−3808 0.6+0.2−0.4
XTE J1908+094 0.75±0.09

Cygnus X-1 0.05±0.01

4U 1957+11 0.8–1.0

A 0620-00 0.12+0.18−0.20
MCG−6-30-15 0.989+0.009−0.002
SWIFT J2127.4 0.6±0.2

Fairall 9 0.60±0.07

1H 0707−495 ≥ 0.98

GBH: line

GBH: disk
6

4

2

0

AGN

GBH

10.50

8

6

4

2

0

N

spin a

N

Fig. 1.5: Compilation of published spin measurements, distinguishing if the spin was deter-
mined by fitting the thermal continuum or the fluorescent emission line from the reflected
spectrum. The table is taken from Fender et al. (2010), where also references for all single
measurements can be found. All values (not upper limits) are plotted in the histograms in the
right panel.

(King et al., 2008; Volonteri et al., 2005). Observations of cavities in nearby galaxy clusters
are also evidence for spin evolution (Wise et al., 2007; Fabian et al., 2000). In galactic binary
systems, the initial kick during the formation of a stellar-mass black hole in a supernova can
lead to a strong misalignment between the disk and the black hole (Brandt & Podsiadlowski,
1995).

Depending on the mode of accretion, it is possible in all of these scenarios that the angular
momenta of black hole and accretion disk become antiparallel, i.e., the black hole has “negative
spin”. As shown by King et al. (2005), both parallel and antiparallel alignments of the disk and
black hole angular momenta are stable configurations; misaligned disks will evolve to one of
them. It is therefore not unlikely that a configuration with antiparallel spins exists in nature.
In fact, accretion onto rapidly-spinning retrograde black holes may be of some importance for
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understanding the properties of powerful radio-loud AGN. Employing the flux-trapping model
of Reynolds et al. (2006), Garofalo (2009) argues that an accretion disk around a retrograde
black hole is a particularly potent configuration for generating powerful jets. Moreover this
interpretation might also explain why only 10% of the AGN are radio-loud (Garofalo et al.,
2010). It is tantalizing that the broad iron line in the powerful radio-loud AGN 3C120 implies
a truncation of the accretion disk at r ∼ 10GM/c2 (Kataoka et al., 2007), very close to the
innermost stable circular orbit (ISCO) for a rapidly-rotating retrograde black hole.

1.4 THE AIM OF THIS WORK

This works aims at exploring the possibilities of broad emission lines for probing strong gravity
and measuring the spin of black holes. Therefore it is necessary to understand the implications
of General Relativity for the environment around a rotating black hole. Chapter 2 presents all
basic and relevant equations to describe the necessary photon and particle trajectories around
rotating black holes. Using the model of a thin accretion disk, which is made out of many parti-
cles orbiting the black hole in circles, Chap. 3 presents the necessary formalism and numerical
techniques to describe photon trajectories emitted from a thin disk to the observer. Images of
the accretion disk for important parameters like the energy shift and the emission angle of
the photon are simulated in Sec. 3.2 in order to get a better understanding of the relativistic
effects close to the black hole. Integrating over the disk assuming mono-energetic emission
leads to broad emission lines. Sec. 3.3 explains the origin of the shape of these emission lines
and explores the influence of parameters like the spin on the line profile. As the implications of
a counterrotating accretion disk on the line profile were never treated in detail before, Sec. 3.4
explicitly shows and explains the differences one would expect in this case. Finally, I compare
popular line models used in data analysis in Sec. 3.5. As none of the currently available models
allow to analyze systems with negative spin, a new model was developed providing this possi-
bility. The numerical details and usage of the model is presented in Chap. 4. Having treated
the emission from the accretion disk in detail, Chap. 5 analyzes the irradiation of the disk for
the case of the jet-base geometry, as current correlations between the radio and X-ray flares
(Markoff et al., 2005; Wilms et al., 2007) make it a very favorable model. Chapter 6 presents
the conclusions and an outlook of future work.
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CHAPTER 2

BASIC THEORY ON SPINNING BLACK

HOLES

In this chapter the fundamental equations for spinning black holes are motivated and partly
derived. This is necessary to be able to describe photon and particle trajectories close to the
black hole. Coming from the point that the observed broad emission lines are somehow due to
the strong gravity in the vicinity of the black hole, these equations establish the connection be-
tween the observed broad emission features and the spin we want to measure. In the following
all formula are given in units such that the gravitational constant and the velocity of light are
equal to one (G≡ c≡ 1).

2.1 SPACETIME AROUND ROTATING BLACK HOLES

2.1.1 THE KERR METRIC

In General Relativity (GR), a spinning black hole can be described by the Kerr metric (Kerr,
1963), which is a solution of the Einstein equation for a spinning, spherical mass. It is fully
determined by the mass M and the angular momentum J, which will be parametrized by the
dimensionless parameter a = J/M. To prevent an unphysical naked singularity, its value is
restricted to |a| ≤ 1. The line element reads

ds2 =−
(

1− 2Mr

Σ

)

dt2− 4aMr sin2θ

Σ
dtdϕ

+
Σ

∆
dr2+Σdθ2+

(

r2+a2
2a2Mr sin2θ

Σ

)

sin2θdϕ2 ,

(2.1)

where ∆ = r2−2Mr+ a2 and Σ = r2+ a2 cos2θ. It is given in the Boyer-Lindquist coordinate
system (Boyer & Lindquist, 1967), where the angle ϕ is measured in the plane of the disk,
and the black hole’s angular momentum points towards θ = 0. This coordinate system can be
related to Cartesian coordinates (see, e.g., Carroll, 2004) by

x=
√

r2+a2 sinθ cosϕ

y=
√

r2+a2 sinθsinϕ

z= r cosθ .

(2.2)

See Fig. 2.1 for a plot in Cartesian coordinates, where surfaces of constant r and θ illustrate
the relation to Boyer-Lindquist coordinates.
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Spacetime around Rotating Black Holes

In the case of a non-rotating black hole, this solution can easily be reduced to the Schwarzschild
metric (1916) by setting a= 0:

ds2 =−
(

1−
2Mr

Σ

)

dt2+
(

1−
2Mr

Σ

)−1
dr2+ r2dθ2+ r2 sin2θdϕ2 (2.3)

As the Kerr metric is axis-symmetric and stationary, there exist two Killing vectors which
characterize the conserved quantities (Carroll, 2004). As expected from classical mechanics,
where the conserved energy originates from invariance under time translation, the time-like
Killing vector Kµ = (∂t)

µ in GR can be used to define the total energy of stationary system ER

(the Komar energy). It is straightforward to show (Carroll, 2004) that the Komar energy is
equal to the mass ER =M given in Eq. 2.1. In analogy, the conserved angular momentum JR

can be defined using the rotational Killing vector Rµ = (∂ϕ)
µ due to the axis-symmetry. This

leads to JR = aM = J and confirms the above interpretation of J as angular momentum.

2.1.2 GENERAL PROPERTIES

A stationary observer sitting at a point (r,θ) should not feel any changes of the metric by
definition. For our choice of coordinates this definition implies that (s)he has to rotate with
angular velocity

Ω= dϕ

dt
= uϕ

ut
(2.4)

with respect to an observer who rests at infinity. Here the definition of the four-velocity is
uµ = dxµ/dτ, where τ is the proper time of a co-moving observer. The total four velocity of this
observers then becomes

~u= ut∂t+uϕ∂ϕ = ut
(

∂t+Ω∂ϕ
)

. (2.5)

Since ~u2 =−1 leads to

−1 != uµuµ

= (ut)2
[

(∂t)
µ(∂t)µ+2(∂ϕ)

µ(∂t)µ+ (∂ϕ)
µ(∂ϕ)µ

]

= (ut)2
(

gtt+2Ωgtϕ+ gϕϕ
)

,

(2.6)

the velocity in t-direction must be

ut =
1

√
−gtt−2Ωgtϕ− gϕϕ

. (2.7)

This equation shows nicely that ut > 0, which means that~u lies in the future light cone. More-
over, the expression under the root has to be positive. This sets an additional constraint on the
angular velocity:

Ωmin =
1

gϕϕ

[

−gtϕ−
√

gtϕ− gttgϕϕ
]

<Ω<
1

gϕϕ

[

−gtϕ−
√

gtϕ+ gttgϕϕ
]

=Ωmax (2.8)

For a non spinning black hole, this inequality restricts particles to move slower than c. Taking
a closer look at Ωmin reveals that it becomes zero at a radius

r0 =
(

1+
√

1−a2 cos2θ
)

rg , (2.9)

13



2 Basic Theory on Spinning Black Holes

called the “static limit”. This means that static observers (Ω = 0), which are closer than this
radius to the black hole, are forbidden. Here and throughout the work we use the “gravitational
radius” rg =GM/c2 to quantify length scales.

Moving closer to the black hole, the event horizon is finally reached where there is only one
possible value, with Ωmin =Ωmax. Following Carroll (2004), the event horizon at a radius rH is
uniquely characterized by the condition grr(rH)= 0. In the case of the Kerr metric this means

∆
!= 0, which results in a radius of

r± =
(

1±
√

1−a2
)

rg . (2.10)

Another specialty of the Kerr spacetime is that unlike in the Schwarzschild metric the curva-
ture singularity does not occur at r =0, but rather at Σ= 0 (Carroll, 2004). As Σ= r2+a2 cos2θ,
this if only fulfilled for

r =0 and θ=
π

2
. (2.11)

Remembering that r = 0 is not a point in space but rather a disk (see Eq. 2.2), the above
equation specifies the ring at the edge of this disk. Careful analytic calculations (Carroll,
2004) show that inside this ring another asymptotically flat spacetime exists, similar to the
spacetime outside the ring, which can be connected by using r <0.

Figure 2.1 shows the Kerr geometry projected onto the x-z plane for a = 0.99. The ring
singularity (Eq. 2.11), which lies in the x-y-plane, is illustrated by the red points. Additionally
the surfaces for θ = const. are drawn (gray dashed lines), in order to emphasize the point that
the Cartesian coordinates are related to the Boyer-Lindquist coordinates (where r and θ are
defined) via an elliptical transformation. Note that the horizons r±, which are surfaces with
r = const., do have the shape of an ellipse. The region between the event horizon r+ and the
static limit r0 is called the “ergosphere”. As explained above, an observer in this region has no
choice but to rotate in the direction of the black hole. This phenomena is called “dragging of
inertial frames” and leads to strange consequences such that it is indeed possible to dive into
this zone and extract energy from the black hole. For further details on that see Carroll (2004).

2.2 GENERAL EQUATIONS OF MOTION

Determining the motion of particles and photons means calculating the evolution of xµ(λ),
described by the Geodesic Equation (see, e.g., Krolik, 1999):

d2xµ

dλ2
+Λ

µ
ρσ

dxρ

dλ

dxσ

dλ
= 0 (2.12)

Equivalent to classical mechanics, it is possible to achieve the same relations more elegantly
by using the Lagrangian or Hamiltonian formalism. As Krolik (1999) shows, the relativistic
generalization can be done by redefining the action

S =
∫Bµ

Aµ
L dλ=

∫Bµ

Aµ
dλ

[

gµν
dxµ

dλ

dxν

dλ

]− 1
2

. (2.13)

Minimizing it along the path by means of variation leads to the geodesic equation, which con-
firms that the Lagrangian describes the same movement. For massive particles one can set

14



General Equations of Motion

θ = const.
r0

r = 0,θ=π/2

r = 0

r−

r+

210-1-2

1

0

-1

x [rg]

z
[r

g
]

Fig. 2.1: The Kerr metric projected onto the x-z plane for a spin a = 0.99 in Cartesian coordi-
nates. The area between the outer event horizon r+ and the static limit r0 is called ergosphere.
The red dots for r = 0 and θ = π/2 are part of the ring-like singularity in the x-y-plane. Addi-
tionally surfaces of constant θ are indicated by dashed gray lines.

λ= τ and easily see that the Lagrangian is constant along the path, which is a crucial require-
ment. This cannot be done for a photon, as its proper time is zero. Following Krolik (1999),
choosing τ=λµ and an effective Lagrangian

Leff =
1

2
gµν ẋ

µ ẋν , (2.14)

solves this problem and leads to the same dynamical equations. As λ is an arbitrary parameter,
we now can describe photons by µ= 0 and massive particles by µ= 1.

As we reduced our problem to a known formalism, calculating the Hamiltonian H = pµ ẋ
µ−

Leff and the momentum pµ = ∂L
∂xµ = gµν ẋ

ν is now straightforward:

H = 1

2Σ

(

∆p2
r + p2

θ−
(r2+a2)2−a2∆sin2θ

∆
p2
t +

∆−a2 sin2θ

∆sin2θ
p2
ϕ−

4Mar

∆
ptPϕ

)

(2.15)
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2 Basic Theory on Spinning Black Holes

where

pt =−
(

1− 2Mr

Σ

)

ṫ−2Mar
sin2θ

Σ
ϕ̇

pr =
Σ

∆
ṙ

pθ =Σθ̇

pϕ =
(

r2+a2+2Ma2r
sin2θ

Σ

)

sin2θϕ̇−2Mar
sin2θ

Σ
ṫ

(2.16)

The derivations of the Hamiltonian ∂µH =−ṗµ with respect to t and ϕ are zero, which imme-
diately lead to the conserved energy pt =−E and angular momentum pϕ =L. Additionally the
constancy of the Hamiltonian describes the conservation of the test particles rest mass

H =−1/2µ2 . (2.17)

A last conserved quantity

Q = p2
θ+cos2θ

[

a2
(

µ2− p2
t

)

+ p2
ϕ/ sin

2θ
]

(2.18)

was found by Carter (1968), which can be derived by making a separation ansatz in the
Hamilton-Jacobi formalism with respect to θ and r. Now the equations of motion are fully
determined and lengthy algebraic calculations (see Bardeen et al., 1972) lead to

Σṫ=−a
(

aE sin2θ−L
)

+
(

r2+a2
) T

∆

Σṙ=±
√

Vr

Σθ̇=±
√

Vθ

Σϕ̇=−
(

aE−
L

sin2θ

)

+a
T

∆
,

(2.19)

for which we defined
T =E

(

r2+a2
)

−aL

Vr = T2−∆
(

µ2+ r2+ (L−aE)2+Q
)

Vθ =Q−cos2θ

[
L2

sin2θ
+a2

(

µ2−E2)
]

.

(2.20)

The signs in Eq. 2.19 can be chosen independently and account for the direction of the particle.
The upper sign means a movement with increasing r, θ and the lower sign stands for the
opposite behavior, respectively. Thus they can be chosen arbitrarily, but change, e.g., when a
turning point occurs.

2.2.1 THE ACCRETION DISK

Having developed the general equations of motion in the Kerr metric, we now want to apply
them to describe a thin accretion disk, which lies in the equatorial plane of the black hole. This
implies that

θ =π/2 and θ̇= 0 , (2.21)
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and therefore Q = 0. The accretion disk itself is most easily modeled by particles which move
on infinitely many circular orbits of different radii. This means that the velocity and the
acceleration in r-direction has to vanish:

ṙ= 0
Eq. 2.19−→ Vr(r)= 0 and r̈ = 0

Eq. 2.19−→ dVr(r)

dr
= 0 (2.22)

Additionally we want the accretion disk to be stationary, because the equations we calculated
before are only valid in this case. These constraints are sufficient to fully determine the trajec-
tories of the particles, which has been done in detail by Bardeen et al. (1972). The results will
be motivated in the following.

Bardeen et al. (1972) first calculated the explicit expressions of E and L:

E

µ
=

r
p
r−2M

p
r+a

p
M

r3/4
√

r
p
r−3M

p
r+2a

p
M

(2.23)

L

µ
=

p
M

(

r2−2a
p
M

p
r+a2

)

r3/4
√

r
p
r−3M

p
r+2a

p
M

(2.24)

Using these results, the angular velocity of the stationary accretion disk becomes

Ω= dϕ

dt
=

p
M

r
p
r+a

p
M

, (2.25)

Note that the fact that particles can be on pro- and retrograde orbits with respect to the spin-
ning direction of the black hole is already correctly taking into account: In our interpretation
the accretion disk always rotates in the same direction, but the black hole changes the direction
(a< 0).

Assuming stable orbits of the particles in order to form an accretion disk additionally im-
poses that

d2Vr(r)

dr2
≤ 0 , (2.26)

which is sufficient for stability as Vr(r)≥ 0. Solving this system of equations reveals that only
radii r ≥ rms are stable, with

rms(a)=M
(

3+Z2−sgn(a)
√

(3−Z1)(3+Z1+2Z2)
)

, (2.27)

where
Z1 = 1+ (1−a2)1/3

[

(1+a)1/3+ (1−a)1/3
]

Z2 =
√

3a2+Z2
1 .

(2.28)

This means that the accretion disk only extends down to a certain radius of “marginal stabil-
ity”, which, e.g., is given by

rms =







1.24 rg for a= 0.998

6 rg for a= 0

8.994 rg for a=−0.998
(2.29)
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Fig. 2.2: This plot shows
the evolution of all im-
portant surfaces around
rotating black holes with
respect to their angular
momentum a. The er-
gosurface r0 is plotted
for θ = π/2, as this is
the plane of the accretion
disk.

Often the radius of marginal stability is also called the radius of the “innermost stable circular
orbit” (ISCO). Fig. 2.2 shows a summary of the evolution of all important radii mentioned above
with respect to a.

Using Eq. 2.5, the four-velocity of the particles making up the accretion disk can be derived
as

~ud = ut
(

∂t+Ω∂ϕ
)

, with ut = r
p
r+a

p
M

p
r

√

r2−3Mr+2a
p
M

p
r

. (2.30)

Clearly it is also possible to extract the trajectories for r ≤ rms from the equations above. As
the orbits are not stable, the particles fall towards the event horizon with the energy E(rms)
and angular momentum L(rms) they have at the radius of marginal stability. This implies that
the particles might have a non-zero velocity and acceleration in r-direction and therefore their
total four-velocity is given by ~u= ut∂t+ur∂e+uϕ∂ϕ. As we will not need this trajectories in the
following and the equations are rather lengthy they are not written here. Interested readers
can find them in Chandrasekhar (1983).

2.2.2 PHOTON TRAJECTORIES

Having described the location and frame where the photons are emitted, we now want to follow
their way to the observer. Due to the large distance to the black hole system, we will only
see photons which travel exactly in our direction. In other words, by looking at the system
under different angles we will measure different photons and obtain different results for the
line shape. Thus it is only important to consider photons which travel at infinity in the same
direction. This section follows the detailed descriptions of Chandrasekhar (1983).

The photons originate from the stationary and axis-symmetric accretion disk, which implies
that we only have to consider the (r,θ)-plane simply because of the symmetry. This leaves us
with only two equations of motion from Eq. 2.19. Integrating over the path from the point of
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emission at the accretion disk (re,π/2) to the observer at infinity (∞,θo) leads to

∞∫

re

dr
p
Vr

=
θo∫

π/2

dθ
√

Vθ

. (2.31)

Additionally one has to take into account that the photons might have turning points in r

and θ-direction. This means that the integration has to be split into several parts. The final
solution will be a combination of these parts, which accounts for the different paths the photon
can take to reach the distant observer.

Examining the possible parameter space of Eq. 2.31 quickly leads to the conclusion that the
roots require

Vr(r)≥ 0 and Vθ(θ)≥ 0 (2.32)

for a real solution. The limits determined by these conditions can be identified with the turning
points rt and ηt (see Chandrasekhar, 1983, for details). Moreover these conditions restrict
q2 > 0 for reasonable photon orbits, which can in principle reach the observer (Chandrasekhar,
1983). Taking into account that the sign changes at the turning point, the trajectories of the
photons can be derived. Without any turning points the integration of Eq. 2.31 can now be
performed

∞∫

re

dr
p
Vr

=−
ηo∫

0

dη
√
Vη

, (2.33)

where we defined Vη := sin2θVθ and substituted η = cosθ. Considering a turning point in θ-
direction splits the integration over η in two parts:

∞∫

re

dr
p
Vr

=−

√

η2t∫

0

dη
√
Vη

+
ηo∫

√

η2t

dη
√
Vη

. (2.34)

Looking at the case of the r-integration in a rough geometrical picture reveals that the turning
point can only occur if the black hole is between the point of emission and the observer. Other-
wise the turning point of the photon would be closer to the black hole than the location where
it was emitted, which can be considered as highly unlikely. Moreover a photon emitted behind
the black hole requires in this picture a turning point in θ-direction in order to be seen by the
observer. Thus we only need one last equation with a turning point for each direction:

−
rt∫

re

dr
p
Vr

+
∞∫

rt

dr
p
Vr

=−

√

η2t∫

0

dη
√
Vη

+
ηo∫

√

η2t

dη
√
Vη

(2.35)

Solving these equations for a specific E and L now fully determines the movement of the pho-
ton. For means of easier calculation it is convenient to choose new integrals of motion

λ=
L

E
and q2 =

Q

E2
, (2.36)
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and multiply Vr,η with E−2. This leads to

Vr = r4+ (a2−λ2− q2)r2+2M
(

(a−λ)2+ q2
)

r−a2q2 (2.37)

Vη =−a2η4+ (a2−λ2− q2)η2+ q2 . (2.38)

The momentum of the photon expressed in the most convenient way then reads

pt =−E

pr =±
E

∆

√

Vr

pθ =±E
√

Vθ

pϕ =Eλ .

(2.39)
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CHAPTER 3

EMISSION FROM A THIN ACCRETION

DISK

In the previous chapter we derived all important equations to be able to describe the particle
orbits for a thin accretion disk in the equatorial plane and the relevant photon orbits around
a rotating black hole. These results allow us finally to simulate the photon spectrum observed
from mono-energetic emission from the accretion disk, which leads to the broad emission lines.
This chapter captures all major effects that influence photons on the way to the observer.
The numerical approach chosen in Sec. 3.1 allows us to calculate and analyze relativistically
distorted images of the accretion disk in Sec. 3.2. Finally, line profiles and the influence of
parameters like the spin or the viewing angle on their shape are examined in great detail
(Sec. 3.3). Although every equation was calculated for a spin −1 < a < 1, Sec. 3.4 is dedicated
to highlight the characteristics of broad lines for negatively spinning black holes. In addition,
popular models describing these broad emission feature are compared in Sec. 3.5.

3.1 TRANSFER FUNCTION

By solving Eq. 2.31, we are able to describe single photons that are emitted at the disk and are
detected under a view angle θo. Before getting to the numerical details of solving this equation,
we will first try to describe the emission from the whole accretion disk, based on the model of
a thin disk described in Sec. 2.2.1.

3.1.1 RADIATION TRANSPORT

For an observer far away from the system, the black hole is a point source. This means that
(s)he can only see the whole disk at once and thus to calculate the observed intensity Iobs

E
(θo),

the locally emitted intensity IEe (re,θe) has to be integrated. The specific intensity IEe emitted
at the disk at energy Ee depends only the radius re and the emission angle θe, due to the
symmetry of the system. It is defined as intensity of photons with energies between E and
E+dE according to

IE =
EdN

dAdEdΩdt
, (3.1)

where dN is the number of photons in the solid angle dΩ with energy, which flow through the
area dA in the time dt. As these variables are clearly not Lorentz invariant, IE is not a good
quantity and will vary depending on the chosen frame of reference. We therefore need to find

21



3 Emission from a Thin Accretion Disk

Fig. 3.1: A drawing of volumes of the phase space VxVP , for the momentum space Vp and the
normal space Vx, necessary to calculate the number density of trajectories N in curved space.
(adapted from Misner et al., 1973)

a way to convert the emitted intensity IEe at the accretion disk to the measured intensity IEo .
Following Misner et al. (1973), it can be shown that the number density, N = δN/(VxVp), of
photons is an invariant, as

dN

dλ
= 0 . (3.2)

Here VxVp is the phase space volume of N identical particles. Equation 3.2 is the collisionless
Boltzmann equation in curved space, which can be easily derived from the general “Liouville
theorem”. Explicit considerations (see Fig. 3.1) lead to Vx = Adt and Vp = dΩE2dE. As we
required all particles to be the same, the relation ~p2 =m2 dictates the four-momenta to lie on
a hyperboloid. Now we can identify the specific intensity with the conserved number density
and we get

IE

E3
=N = const. (3.3)

Now we finally obtained a connection between the observed and the locally emitted intensity.
The integration over the whole accretion disk is easily performed, after the disk is projected
onto a plane perpendicular to the line of sight, spanned by the impact parameters α and β (see
Eq. 3.16), which are connected to the solid angle through (Cunningham & Bardeen, 1973)

dαdβ= d2dΩ , (3.4)

where d is the distance to the system. Using this relation, the observed intensity becomes

IobsE =
∫(

E

Ee

)3

IEe (re,θe)dαdβ . (3.5)

The ratio E/Ee between observed and emitted energy is exactly the energy shift g of the photon.
For a non-rotating black hole, this energy shift can be easily calculated from the Schwarzschild
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metric (see e.g. Carroll, 2004) to be

g(a= 0)=
√

1−
2M

re
. (3.6)

Taking into account that the observer measures in a flat Minkowski space and using the ex-
pressions for the four-momentum of the photon in the Kerr metric, the expression of the general
relativistic Doppler shift becomes

g=
E

Ee
=−

E

p
µ
euµ

=
p
re

√

r2e−3Mre+2a
√

Mre

re
p
re+a

p
M−β(α)

p
Mλ

. (3.7)

Note that λ depends on the direction of the black hole’s rotation, i.e., that the sign changes
in the case of negative spin, as the photon does not change its direction. This is taken into
account by the function

β(α)=
{

+1 for a≥0

−1 for a<0
. (3.8)

The introduction of β(a) is required, as a change in the direction of the rotation implicitly
requires a flip of the coordinate system, but we do not want the photon to change direction. In
principle this would be taken into account correctly by the sign of the spin, but in the case of
a = 0 one coordinate system has to be chosen. Figure 3.2 shows the energy shift of a complete
accretion disk as seen by a distant observer, illustrating the effects of gravitational redshifting,
Doppler boosting, and light bending. Note that for the special case of viewing the accretion
disc from top (θo = 0, leading to λ= 0), the purely gravitational redshift for a negative spin is
slightly higher than for positive a.

Moreover Eq. 3.7 implies that if we know at which energy the photon is emitted from the
disk and how its energy is shifted, we can calculate the energy at which it should be observed.
For simplification of the calculation, we create a homogeneous parameter space by redefining
g. Using the maximal and minimal value of g, we define for each gas ring and inclination angle
the parameter

g∗ := g− gmin

gmax− gmin
, 0≤ g∗ ≤ 1 . (3.9)

Due to symmetry, there can be up to two solutions for a specific g∗ and a certain radius. The
reason for the existence of these two solutions can be easily visualized, as one obviously has
two possibilities on a circle to get from the minimum to the maximum value of the energy shift.
As g is a steady function, each value in between the extreme values appears twice.

The only unknown quantity left is the emission angle θe. Due to the effects of strong gravity
in the vicinity of the black hole, the photons do not travel on a straight path and will in general
be observed under an angle different from the one under which they are emitted. Nevertheless,
the emission angle is already totally defined by the four-momentum of the emitted photon.
With the normal vector to the disk ~n and the energy of the photon −p

µ
euµ, these quantities are

related by

cos(θe)=
~pe⊥
|~pe|

=−
p
µ
enµ

p
µ
euµ

=−
p
µ
enµ

E
g , (3.10)
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Fig. 3.2: Map of a accretion disk around a maximally spinning black hole (a = 0.998) as seen
from a distant observer at an inclination angle of θo = 40◦. The disk ranges from the marginally
stable radius (rin = 1.24 rg) to rout = 60 rg. α and β are the coordinates defined on the plane of
the sky (i.e., perpendicular to the line of sight; see Eq. 3.16). The color code shows the energy
shift of the photons, asymmetries are due to relativistic light bending. The blue-shifted left
part of the disk moves towards the observer, whereas the right part recedes from the observer.

where we used Eq. 3.7 for the last equality. Furthermore the normal vector can be expressed
by

~n=
1

Σ
∂θ

∣
∣
∣
∣
θ=π/2

, (3.11)

as it is defined as a spatial vector perpendicular to the accretion disk. Using the four-momentum
of the photon from Eq. 2.39, the fact that η2|π/2 = 0, and the expression for Vη (Eq. 2.37), the
angle becomes

cos(θe)=
qg

re
. (3.12)

3.1.2 TRANSFER FUNCTION OF CUNNINGHAM

For means of calculation, Cunningham (1975) defined the Transfer Function f

f (g∗, re,θ0)=
1

πre
g
√

g∗(1− g)

∣
∣
∣
∣

∂(α,β)

∂(g∗, re)

∣
∣
∣
∣ . (3.13)

Using the relations derived above, the total observed intensity then reads

IobsE =
∞∫

rms

1∫

0

4π2re
g2

g∗(1− g∗)
f (g∗, re,θ0)IEe (re,θe)dredg

∗ (3.14)
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Fig. 3.3: The impact parame-
ters α and β for a photon with
momentum pµ. They describe
how a distant observer would
see photons emitted around
the black hole, which are pro-
jected perpendicular to his
line of sight.

Here we parametrized the accretion disk in (re, g
∗) space. Because this parametrization leads

to the conserved quantities λ and q, the motion is still defined properly.

In models for describing broad emission lines, the specific intensity IEe is commonly para-
metrized by

IEe ∝ r−αe ·ǫ(θe) . (3.15)

Thus the radial dependence is described by a power law characterized by the emissivity index
α. Usually values of α= 2–3.5 are observed. Furthermore the intensity might depend on the
emission angle. The angular dependency is described by ǫ(θe).

3.1.3 NUMERICAL CALCULATION

For the numerical evaluation of the transfer function we use a Fortran 77 code developed by
Speith et al. (1995). Therein the emission from the accretion disk is modeled by a grid in the
(re, g

∗)-space. As explained above, this approach is sufficient to describe the motion of the
photons.

In order to evaluate the derivation of the impact parameters α and β (Eq. 3.4) in the transfer
function (Eq. 3.13), we need to express them in terms of the photon momentum. Fig. 3.3
illustrates the definition of the impact parameters.

Now we express the impact parameters by the four momentum using simple geometric con-
siderations as

α=−d p(ϕ)

|p(µ)|
= −d

pµ

[

e(ϕ)
]µ

pµ

[

e(t)
]µ and β= d

p(θ)

|p(µ)|
= d

pµ

[

e(θ)
]µ

pµ

[

e(t)
]µ . (3.16)

The coordinates of the momentum in the equation above are written in brackets in order
to show that they are the coordinates of the observer in a flat Minkowski space. Following
Misner et al. (1973), (s)he aligns his/her tetrads1

~e(t)=~u , ~e(i) =~e
µ

(i)∂µ and ~e
µ

(i)~e
ν
(i)gµν = η(i)( j) , (3.17)

where ηµν is the Minkowski metric. Applying these conditions, the tetrads of an observer at

1In GR the tetrads are an orthonormal set of four vector fields. For more information see, e.g., Misner et al. (1973)
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3 Emission from a Thin Accretion Disk

rest can be constructed. In spherical coordinates they read:

~e(t)=

√

Σ

Σ−2Mr
∂t

~e(r) =

√

∆

Σ
∂r

~e(θ) =
1
p
Σ
∂θ

~e(ϕ) =−
2Mra
p
Σ∆

√

sin2θ

Σ−2Mr
∂r+

√

Σ−2Mr

Σ∆sin2θ
∂ϕ

(3.18)

Combining the coordinate system of the observer with the four momentum of the emitted pho-
ton (Eq. 2.39), we can now derive the impact parameters with Eq. 3.16. As the observer is far
away, we take the limit d→∞ and obtain

α=−
λ

sinθ0
and β=±

√

Vθ . (3.19)

Furthermore the impact parameters are defined such that

dαdβ=
∣
∣
∣
∣

∂(α,β)

∂(λ, q)

∣
∣
∣
∣dλdq=

q

sinθ0β
dλdq . (3.20)

In this way we are able to calculate the partial derivative of the solid angle, which appears in
the transfer function f (Eq. 3.13), leading to

∣
∣
∣
∣

∂(α,β)

∂(g∗, re)

∣
∣
∣
∣=

q(gmax− gmin)

sinθ0β
∣
∣
∣
∂(g∗,re)
∂(λ,q)

∣
∣
∣

. (3.21)

The exact description of the numerical details are given by Speith et al. (1995). A short
summary will be given in the following, focusing on the parts that were changed in order to
allow also for negative spin.

At the beginning a certain gas ring with radius re is chosen and its minimal and maximal
energy shift is calculated. Using Eq. 3.9, the ring is split into parts of different energy shift
g∗. For each single value of g∗, λ can be calculated by transforming Eq. 3.7. This is inserted
in the integral equations (Eqs. 2.33–2.35), where the only unknown quantity is q. Solving
these equations numerically for q in each case, we filter the photons with a certain (g∗, re)
that actually hit the observer. Now the motions are fully determined and we can calculate the
derivative of Eq. 3.21 numerically in order to derive the transfer function. As we build the
accretion disk out of many gas rings, we have to repeat this procedure for their different re.

All the above steps are calculated using the algorithm provided by Speith et al. (1995), which
was adapted for negative values of the spin. Although the effects of negative spin are automat-
ically taken into account correctly in most cases by the sign of a, three minor but important
changes were required to the following Fortran functions:

DEFPAR calculates the radius of marginal stability according to Eq. 2.29. It has been adjusted
to take the lower sign into account, too, in order to return the correct radius also in the case of
negative spin.
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Imaging the Accretion Disk

GINVRS uses Eq. 3.7 to calculate λ for a certain re. It was modified to take the change in
coordinates from the transition of positive to negative spin into account, meaning that the
function β(a) is properly included.

INTGVT integrates the angular part of the equation of motion (Eq. 2.31). The numerical inte-
gration chosen by Speith et al. (1995) has to be changed to

INTGVT= 1

2|a|

∫+1

−1

√

dη
√

η2η2max−η2min

√

1−η2

± 1

|a|

∫p
ηmax−ηo

0

2dη
√

(2ηmax−η2)
(

(ηmax−η2)2−η2min

)
.

(3.22)

where

ηmax/min =
1

2a2

[

a2− q2−λ2±
√

(

a2− q2−λ2
)2+4a2q2

]

(3.23)

The upper sign of Eq. 3.22 is taken if no turning point in θ-direction exists. In the original
version of the code taking the absolute value of a was not necessary, as a was positive by
definition.

3.2 IMAGING THE ACCRETION DISK

The above presented equations and numerical techniques now allow to trace any photon from
the accretion disk to the observer. Before integrating over all the photons emerging from the
disk in order to calculate line profiles, we reconstruct the image of the accretion disk as seen
by a distant observer. Hence, we use the α and β parameters (see Eq. 3.16), which are defined
on a plane perpendicular to the line of sight (Fig. 3.3). As these parameters are defined in flat
space, we obtain an image of the photons after being relativistically distorted and therefore are
able to visualize the relativistic light bending effects. Images of this kind and more details on
constructing them can already be found in literature, e.g., in Cunningham & Bardeen (1973),
Luminet (1979), Hollywood & Melia (1997), Falcke et al. (2000), and Beckwith & Done (2004)
to name some. All figures discussed in the following are for an accretion disk with an outer
radius of 60 rg around a maximally rotating black hole (a= 0.998). The inner edge of the disk
coincides with the radius of marginal stability, i.e., rin = 1.24rg.

Figure 3.2 already showed a map of the accretion disk for θo = 40◦, in order to illustrate the
energy shift and how it varies over the disk. The motion of the accretion disk is clearly visible:
the left part, which is blue-shifted, moves towards the observer, whereas the right part recedes,
respectively. Additionally slight asymmetries due to light bending can already be observed.
When looking close enough on the image, it can be seen that the back of the accretion disk
(the upper one in the image) seems to be a little bit larger. This is due to the light bending,
which makes this part of the disk look like we would observe it under a smaller inclination
angle. This effect is strongly enhanced for an inclination of θo = 80◦ (Fig. 3.4). Additionally it
reveals that not all of the back of the disk is flipped up equally, but that the photons emitted
directly behind the black hole are deflected most. Moreover a slight asymmetry due to the
frame-dragging of the black hole’s rotation can be observed. This influences the photons at
the inner radii of the disk most strongly. In the zoomed image one can see that the black hole
actually seems to be situated in the lower left corner inside the disk and clearly not centered.
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Fig. 3.4: Same as Fig. 3.2, but showing the energy shifts of the photons for an inclination of
80◦. The color scheme reflects the direction of the energy shift, i.e., red illustrates a shift to
lower energies and blue a shift to higher energies, respectively. Note how the light bending
serves to virtually flip the disk behind the black hole upwards.

The energy shift due to Doppler effect is expected to be larger in the case of high inclinations,
as the projected velocity of the particles in the disk is higher. And indeed, the maximal energy
shifts are gmax(40

◦) ≈ 1.1 and gmax(80
◦) ≈ 1.4. Note that the absolute values of the energy

shift do not coincide with the pure Doppler shift, but gravitational redshift and other spin
dependent effects contribute, too. Nevertheless, the change in energy shift with inclination
can be compared, as the other effects named above do not depend on the angle. In fact, the
gravitational redshift gets extremely strong close to the black hole. As can be seen in Fig. 3.2
and Fig. 3.4, no blue-shifted photons are observed from the very inner part of the accretion
disk, despite the relativistic movement of the emitting particles towards the observer.

The other interesting parameter characterizing a photon when emitted from the disk, is the
emission angle θe (see Eq. 3.10 for a definition). Figure 3.5 shows θe for inclinations of θo = 40◦

and θo = 80◦. The shape of the disk itself does not deviate from Fig. 3.2 and Fig. 3.4, as the
photon trajectories stay the same. Hence, we will only concentrate on the effects of the viewing
angle on θe. For both inclinations, the emission angle converges towards θo at sufficiently
large distances from the black hole. This behavior is good, as θe ≈ θo implies that the photon
flies on a straight trajectory to the observer. Especially for θo = 40◦, slight differences at larger
distances are visible between the left and the right part, because of the rotation of the accretion
disk. The rotation plays a role here, as θe is measured in the rest frame of the disk and hence
also depends of the motion of the particle with respect to the observer. Looking at the zoomed
images in Fig. 3.5, the profile varies more strongly close to the black hole and the angle takes
almost all values between 0◦ and 90◦. In greater detail, θe is much lower than the inclination
for photons emitted behind the black hole, as light bending affects the photon trajectories in
this case most. Even for θo = 80◦, the emission angle gets close to 0◦ for a small part of the
disk. Again due to the rotation of the disk and also the rotation of the black hole, this effect is
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Fig. 3.5: Map of an accretion disk showing the emission angles, θe, for which the photons reach
the observer under θo = 40◦ (upper panel) and θo = 80◦ (lower panel). See also Figs. 3.2 and 3.4,
and the text for explanation concerning the distorted shape of the accretion disk.

stronger for particles moving towards the observer and in the rotational direction of the black
hole. Therefore the region of low emission angles is in both cases shifted asymmetrically to
the left. Additionally there is also a region of relatively high emission angles at the innermost
radii of the disk. This is best seen for θo = 40◦ in form of the blue ring, as in this case the
average emission angle is much steeper.

Although most of the emission angles are close to the viewing angle, taking this effect cor-
rectly into account is important, as most of the emitted photons originate from the innermost
regions of the disk, assuming I ∝ r−3 for a standard Shakura & Sunyaev (1973) disk. Hence,
also the dependency of the intensity on the emission angle needs to be treated thoroughly.

3.3 UNDERSTANDING THE LINE PROFILE

In order to get from the picture of the accretion disk to a line profile, we can use similar numer-
ical techniques. As we are now interested in the intensity, we assume an intrinsic intensity
profile of the accretion disk in form of a narrow Gaussian line. Then we are ready to perform
the integration over the disk, i.e., solve Eq. 3.14. Fig. 3.6 shows how the resulting line profiles
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look like. Additionally, this section should motivate the relation between the line shape and
the physical system, consisting of the black hole and the accretion disk. Hence we will examine
in detail the changes in shape that parameters like the spin or the inclination angle induce.
Moreover the physical reason for the shape is motivated.

All plotted data are simulated for a narrow Gaussian emission line with a width of 0.01Ee.
We assume Ee = 6.4keV from the neutral Kα transition (dashed gray line) in the rest frame
of the disk. All emission profiles are chosen to be in the form of r−α, as currently available
models use this parametrization (e.g., Fabian et al., 1989; Laor, 1991; Dovčiak et al., 2004).
The accretion disk extends from the radius of marginal stability up to 50 rg. All emission lines
are normalized to have the same flux, i.e., the area below each curve is the same.

Figure 3.6a shows the line profile for different viewing angles θo. Here the emissivity
(α= 0.5) and the spin of the black hole (a = 0.998) are chosen to be constant. What imme-
diately catches the eye is that all lines are somehow double-peaked, i.e., there exists a blue-
and a redshifted peak with respect to the rest wavelength. The reason for this is obviously
the Doppler effect, as for θo = 0◦, some part the disk moving towards the observer (photons are
blue-shifted) and another part moving away (photons are redshifted). Hence it is clear that for
the special case θo = 0◦ only one peak is visible, as the observer looks face-on onto the disk and
no particles are moving in his/her direction. Overall, the lines are shifted to lower energies,
as the photons have to escape from the deep gravitational potential induced by the black hole
(see Sec. 3.1). Moreover it is quite striking that for higher inclination angles the blue peak is
always stronger than the red one. This is also readily explained, as the material in the inner
disk moves with relativistic velocities. Hence, we would expect a “boost” in intensity, if the
emitter is flying towards the observer. Additionally the distance between the two peaks grows
with the viewing angle. Although the speed of the disk is not varied, the observer only notices
the effects of the projected velocity of the particles onto the line of sight, which is related to the
real velocity by cosθo. Hence, under lower inclination angles the particles seem to move slower
and therefore the photon energies are shifted less strongly.

Fig. 3.6b shows how the emissivity of the accretion disk influences the line profile. For clar-
ification some intensity profiles r−α are illustrated in the left panel, where one can clearly see
what the emissivity means: For larger values, more photons emerge from the highly relativis-
tic inner regions of the accretion disk. The evolution of the line profile with the emissivity
index α in the right panel is dominated by this feature. For increasing emissivities a greater
amount of flux is present in the red wing of the emission line. This increase is due to the
larger fraction of photons being emitted at the region very close to the black hole, which are all
highly redshifted. As can be seen in Fig. 3.2, even photons emitted by particles moving towards
the observer are redshifted. Additionally the red peak slowly vanishes and the blue peak gets
weak with respect to the rest of the line. All these effects change the line from a double peaked
shape, to an asymmetric emission line extending to even lower energies. More generally, the
emissivity of the disk depends on the incident spectrum on the accretion disk. The photons
also get relativistically distorted after being emitted at the hard X-ray source, which leads to a
characteristic spectrum in the rest frame of the disk and therefore a characteristic emissivity.
Hence, the strong dependence of the line shape on the emissivity might offer a way to constrain
the geometry of the system.

The major effect of the spin on the line profile is its influence on the inner edge of the disk.
Other effects due to an influence of the metric itself on the photons will be considered in
Sec. 3.4. Figure 3.6c compares profiles for different spins from maximally negative to maxi-
mally positive, for an inclination angle of θo = 40◦ and an emissivity of α = 3. This is a very
common parameter combination found in observations. The panel on the left hand side illus-
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Fig. 3.6: The shape of broad lines for different a) inclinations θ , b) emissivities α, and c) spins
a. For each sub figure, the left panel sketches what the variation of the specific parameter
means. The label a=±1.0 stands for the maximal value of the spin, i.e., in our case a=±0.998.
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3 Emission from a Thin Accretion Disk

trates how the inner edge moves from rin(a = −0.998) ≈ 9 rg to rin(a ≈ +0.998) = 1.24 rg (see
Eq. 2.29). Note how the event horizon of the black hole increases for |a| → 0. The arrows on
the disk should mimic the photons emerging from the disk. It is clearly visible that due to a
larger inner radius of the disk, less photons are emitted in the region very close to the black
hole. Hence there are less strongly redshifted photons from this emission line present in the
spectrum. This explains the evolution towards narrower lines for a highly negatively spinning
black hole. Note that the shape and position of the blue peak is unaffected by this process,
although its strength increases with respect to the wing of the line. Moreover it should be
noted that although the accretion disk might physically reach down to the radius of marginal
stability, the broad line only probes the region of fluorescent emission. But if the inner re-
gions are fully ionized, no electrons remain to produce fluorescent emission and therefore we
would measure a larger effective inner radius of the accretion disk (see, e.g., Ross & Fabian,
2005). If we have to drop this assumption, the minor effects of the spin only depending on the
influence of the metric on the photons are the only ones left to actually measure the spin. Ad-
ditionally, recent magneto-hydrodynamic simulations show that emission from the “plunging
region”, which is the region between the inner edge of the disk and the event horizon, might
be enhanced due to trapping of the magnetic flux (Reynolds et al., 2006). Hence, part of the
observed emission does not originate from the accretion disk, which again conflicts with the
assumption rin= rms.

Another effect not so easily visible, but nevertheless necessary for a correct treatment, is
the choice of the angular dependency ǫ(θe) of the emitted intensity from the accretion disk.
A careful treatment of this aspect is given by Svoboda et al. (2009a). The baseline is that in
general one would expect a slight limb-brightening in typical accretion disks, i.e., emission
for high θe is more probable. Therefore the limb-darkening used by Laor (1991) and the also
limb-brightening suggested by Haardt (1993) give slightly wrong results for the line profile and
bias model fitting. As suggested by the simulations of Svoboda et al. (2009a), using isotropic
emission for data analysis leads to the least bias in other fitting parameters, as the available
limb-brightening of Haardt (1993) overestimates the actual strength of brightening.

Summarizing the effects the different parameters have on the line shape, one notices the
huge amount of different parameters the shape depends on. Hence the space for predictions
by analyzing such broad line features is enormous. Nevertheless, one would need excellent
data quality, which is not available at the moment, to make use of all of these features. As the
differences in line shape are quite small for some parameters (e.g., the outer radius), assump-
tions have to be made in order to be able to obtain reasonable fitting results, e.g., that the disk
extends down to the radius of marginal stability. But if we do so, we can get a grip on very
important parameters like the spin, the inclination, and the emissivity, and therefore maybe
the geometry of the system.

3.4 NEGATIVELY SPINNING BLACK HOLES

In addition to affect the stability of particle orbits (see above), and thus the inner radius of
the accretion disk, a negatively spinning black hole also influences the photons directly. This
effect solely on the photons can be visualized when simulating the very same accretion disk
for different spins. In practice this means setting the inner radius of the accretion disk to
9 rg, which is the inner edge of an accretion disk around a black hole with maximal negative
spin. The following section is a detailed explanation of this topic, which has already been pub-
lished (Dauser et al., 2010). In Fig. 3.7 we compare the line profiles for a maximally rotating
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Fig. 3.7: Line profiles of a relativistic iron line emitted at 6.4keV in the rest-frame of the
disk (Dauser et al., 2010, Fig. 3). Typical inclination angles θo are displayed along with an
emissivity of r−3. The maximally spinning black hole (a = +0.998) is drawn in red, the non-
rotating (a=0) in black, and the blue line shows the broad emission line for maximal negative
spin (a = −0.998). In order to allow for a comparison of the line shapes, the inner edge of the
accretion disk was set to r =9 rg for all profiles.

Kerr black hole, a Schwarzschild black hole, and a black hole which is maximally counter-
rotating for several different inclinations. The accretion disk emissivity was assumed to be
IEe ∝ r−3, i.e., the emissivity obtained from a simple accretion disk in the Newtonian regime
(Shakura & Sunyaev, 1973). In order to allow for a comparison of the line shapes with earlier
results, we use the limb-darkening law of Laor (1991), even though for lines caused by fluo-
rescence due to the irradiation of a disk with hard X-rays from above, a limb-brightening law
would be more appropriate (Svoboda et al., 2009a). The figure shows that the major difference
between the different spins for the same accretion disk is the strength of the core of the line
relative to the red wing, which decreases with decreasing a. For this case of a large inner
radius, the most significant differences in line shape are seen for low values of θo while the
red tails are virtually indistinguishable. The slight increase in line flux at the lowest energies
is due to the increased Doppler boosting in the case of a < 0 (for a given radius, the angular
velocity Ω increases with decreasing a, Eq. 2.4).

The difference in energy shift of photons emerging from an accretion disk between maximal
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under an inclination of 40◦ (left panel) and 80◦ (right panel).

positive and maximal negative spin of the black hole is shown in Fig. 3.8. In general these
differences are low and reach at maximum of ≈ 0.2keV in the case of the neutral Kα line
with an energy of Ee = 6.4keV. The largest differences appear close to the inner edge of the
accretion disk in a way that the photons from negatively spinning systems are shifted more
strongly to lower energies. As these differences are largest close to the inner edge of the disk,
a higher emissivity enhances the deviations in the line profiles. In the equation defining the
energy shift g (Eq. 3.7), we already derived that photons emitted from a counterrotating disk
viewed face-on are less strongly redshifted. Despite this trend, overall these photons are more
strongly redshifted for the inclinations shown in the image. Hence the energy shift of the
photons has to be dominated by the influence of the effective velocity of the accretion disk, as
seen by the observer. In the left part of the disk, which is already mainly blue-shifted due to
its movement towards the observer, a slight increase in energy shift is evident for negative
spin. Similarly the right part is more strongly redshifted in the case of a negatively spinning
black hole. Summarizing, the most important implication of negative spin on the energy shift
is a faster rotation of the accretion disk (Eq. 2.4) and therefore a stronger Doppler boost of the
emitted photons, compared to a positively spinning black hole. Additionally, the overall energy
shift is towards lower energies in the case of a negatively spinning black hole, which can be
seen in the increase in flux at the lower end of line profiles, too (Fig. 3.7). As the largest energy
shifts take place close to the inner edge of the disk, the differences in line shape between
positive and negative spin are enhanced by an increasing emissivity.

Figure 3.9 shows line profiles for different spins of the black hole for the more realistic case
that the disk extends down to the marginally stable orbit. Since the inner edge of the disk is
closer to the black hole for positively spinning black holes, more strongly redshifted photons
emerge. As already noted by Jaroszynski (1997), this leads to broader lines in these systems,
especially for disks with an emissivity that is strongly peaked towards rin. Maximally nega-
tively spinning black holes have the smallest width, although the line will still be detectable as
being broad even at CCD resolution (depending on inclination, typical widths of the main peak
are around 200 eV). Lines from counterrotating black holes will therefore be more difficult to
detect than lines from positively rotating black holes.
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The major difference of line shapes for disks around black holes with a = 0 and counterro-
tating disks (see Fig. 3.9) lies in the strength of the blue peak, since the skew symmetric shape
is mainly due to frame dragging effects and the small inner radii. Detecting these lines obser-
vationally is therefore more difficult than detecting lines from disks around positively rotating
black holes. In addition, as shown by Svoboda et al. (2009a), limb-darkening/-brightening af-
fects the strength of the red wing. For counterrotating black holes, this results in a possible
degeneracy, as for different limb-darkening laws similar line shapes might result for a∼0 and
a = −0.998. Using a physically motivated limb-darkening law would avoid this degeneracy.
The line shapes also become more similar if the assumption that emission down to the radius
of marginal stability contributes to the shape is dropped. This assumption might not be justi-
fied in some cases, as fluorescent emission only takes place in irradiated parts of the disk which
are not fully ionized. Thus the inner radius of the emission becomes larger, which results in
a weaker red tail of the line profile. This effect leads to line shapes for different spin that are
more similar and closer to the ones in Fig. 3.7.

In order to study the question of observability in greater detail, we have performed simu-
lations of observations of a relativistic line with the planned International X-ray Observatory
(IXO ), using response matrices obtained from the IXO team (Smith, priv. comm.). We base
the simulations on power-law fits to XMM-Newton data from MCG−6-30-15 in a typical state,
using a power law continuum with a 2–10keV flux of 2.5×10−11erg cm−2 s−1 and photon in-
dex Γ = 1.6, absorbed by a column NH = 1021 cm−2. We set the equivalent width of the line to
350 eV (typical for MCG−6-30-15). Figure 3.10 shows that in a 50ksec observation the next
generation X-ray instrumentation will easily allow to separate even the difficult case of nega-
tively spinning black holes. Note that this is only valid for the assumption that the accretion
disk extends down to rms. If this inner radius and the spin are fitted independently, even long
observations by IXO will not succeed in constraining the spin.

3.5 DIFFERENT MODELS

In the following section, the different models and their approximations are presented. They
are all designed to fit spectra, which sets the upper limit of the duration of one line calculation.
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shown for three simulations assuming
a = −0.998, a = 0, and a = +0.998, re-
spectively (Dauser et al., 2010, Fig. 6).

This is compared to exact simulations of the line shape, which usually last around three orders
of magnitude longer. All models are normalized such that the area below each curve for a
specific inclination angle is the same. Besides the analytic diskline model (Fabian et al.,
1989), which is calculated for the special case of a=0, all other models for broad emission lines
use large tables of precalculated values. These are necessary, as solving the equation of motion
numerically is a very time-consuming process. Hence the outcome of these simulation is stored
in huge tables for various combinations of the desired parameters a, θo, and re. The relativistic
line shape is then calculated by interpolating the values in the table. The models differ in the
size of their tables, the interpolation techniques and also in the type of information stored in
the table. The most commonly used models will be presented in the following.

A comparison of popular models for different inclination angles and emissivities to exact
profiles can be found in Fig. 3.11 and Fig. 3.12, respectively. All profiles are calculated for a
maximally rotating black hole (a = 0.998). Furthermore photons from the radius of marginal
stability rms = 1.24 rg down to r =50 rg are used when integrating the line profile. Additionally
the exact simulation uses a Gaussian emission line at Ee = 6.4keV with a narrow width of
σ= 0.01Ee in the rest frame of the disk.

3.5.1 THE laor MODEL

The majority of publications for measuring the black hole’s spin use the laor-model (Laor,
1991), which was the first model valid for a spinning black hole and was derived for a fixed
a = 0.998. This assumption clearly limits the possibilities and does not allow for a direct de-
termination of the black hole spin (but see, Svoboda et al., 2009b). Moreover the angular
directionality law was taken to be a limb-darkening law. Only a small grid of transfer func-
tions is integrated in the model. Figure 3.11a shows a comparison for different viewing angles
θo to the exact calculation. Although the line shape seems crude, it at least approximately fits
the exact calculation, as the position of the peaks is correct. In contrast to that the model is
not able to describe any of the blue peaks correctly. For lower angles, where the peaks become
narrower and stronger, the laor model lacks to describe the dynamic features totally. Despite
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Fig. 3.11: Comparison of models for relativistic lines for different inclination angles θo with an
exact calculation (gray) for an emissivity α= 0.5 and spin a= 0.998.

strong differences between θ = 5o and θ = 10o in the exact model, there is hardly any difference
in the model, i.e., a low viewing angle will not be well constrained during fitting and might
influence other fitting parameters in the wrong way. Figure 3.12a reveals that for higher emis-
sivities the laor-model is able to describe the overall line profile better, as the line shape gets
smoother. Note that although not constrained by the bin size, the sharp edge to the right of
the blue peak is predicted too smooth for all emissivities. Because of the above reasons, the
laor-model should not be used for fitting high resolution data from XMM-Newton, Chandra,
or Suzaku, although it is available in the standard XSPEC package.

3.5.2 THE kyrline MODEL

Dovčiak et al. (2004) designed the kyrline model, which uses a huge tables of transfer func-
tions. This approach serves to calculate the line shape quickly, without strong interpolation
but with a much higher resolution than laor. Additionally, a is variable for fitting the spin of
a black hole from 0 to 1. The comparison for different inclination angles with our calculations
can be seen in Fig. 3.11c. The model fits the exact calculation for all inclination angles and
even at the narrow peaks very well. Also for all reasonable emissivities, the model perfectly
follows the exact line shape, as can be seen in Fig. 3.12c. Moreover kyrline provides different
angular directionalities of the emitted radiation, namely isotropic, limb-darkening and limb-
brightening. In order to achieve this, a large table for each of them is calculated, as the angular
integration is hard-coded in the table. But the comparison proves that the model can be used
for fitting high resolution data without restrictions.

3.5.3 THE kerrdisk MODEL

Stating that the kyrline model of Dovčiak et al. (2004) is too large and still not smooth,
Brenneman & Reynolds (2006) presented a model, which uses a comparably small sized ta-
ble and strong interpolation techniques. The fact that the transfer function is very smooth
allows them to strongly interpolate it. Moreover a different approach, which is more flexible,
is used here: The narrow emission line in the rest frame of the disk is not chosen to be a
Gaussian, but approximated by a δ-function. This allows them to perform a greater part of the
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Fig. 3.12: Popular line models for different emissivities α are compared to the exact calculation
(gray) for an inclination of θ = 40◦ and spin a= 0.998.

integration analytically. In the end this means that the angular emissivity law is not encoded
in the calculated table, but can even be changed in principle during fitting. All in all this serves
to reduce the size of the table to only a fraction of the kyrline-table. The kerrdisk model is
plotted in Fig. 3.11b and Fig 3.12b. The line profile does not look as smooth as kyrline, but
exhibits spikes which can be seen best in the red wing of the lines. However, if the line is
evaluated on an energy grid appropriate for a Silicon detector, these spikes will be averaged
out and therefore have no effect on any of the published results. When evaluating the model
on an even finer grid, much larger spikes appear (see Fig. 4.3). But as such a fine grid is far
beyond any detector’s resolution, they are of no importance for data modeling. In contrast to
the laor model the overall shape of the emission line fits better and all dynamic features are
captured. Not only more values are calculated, but also the peaks are more pronounced. Nev-
ertheless, there are still larger deviations from the exact calculations for low inclination angles
(Fig. 3.11b).
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CHAPTER 4

THE relline MODEL

As motivated in Sec. 1.3.3, we expect some sources to have negative spin. But although
first calculations of line profiles for a negatively spinning black hole were already performed,
e.g., by Jaroszynski (1997) and Schnittman (2006), none of the currently available models in
X-ray spectral analysis programs like ISIS or XSPEC for relativistic lines such as diskline

(Fabian et al., 1989), laor (Laor, 1991), kerrdisk (Brenneman & Reynolds, 2006), or the ky-
family of models (Dovčiak et al., 2004), are valid for black holes with retrograde accretion
disks. However, a further exploration of this feature requires fully-relativistic broad emis-
sion line models that are valid for retrograde black holes as well. Therefore the formalism
of Cunningham (1975) employed by many of these models was extended in this work to the
case of −0.998 ≤ a ≤ +0.998. The implementation of the model is called relline and was al-
ready published (Dauser et al., 2010). The following chapter presents a detailed overview of
the model.

4.1 NUMERICAL IMPLEMENTATION

The effort to calculate line profiles is almost fully buried in the determination of the transfer
function, which depends in general on four parameters (a, θo, re, and g). In order to allow for
a real-time fitting of observational data it is generally necessary to precalculate the transfer
function f (Eq. 3.13) or some variant of it. The quality of a given model then depends strongly
on the amount of precalculated information. Table sizes can amount up to several hundreds of
megabytes.

In most available models, the chosen approach is to precalculate the value of the inner
integral in Eq. 3.14 using a Gaussian line shape for IEe and some prescription of the limb-
darkening law, i.e., the dependence of IEe from θe. A disadvantage of this strategy is that any
change of the limb-darkening law necessitates a recomputation of the precalculated tables. In
order to avoid this problem, we use a Green’s function approach to model the specific intensity
originating from the disk as purely mono-energetic at Ee,

IE(re,θe,Ee)= δ(E−Ee)IEe (re,θe) , (4.1)

The dependencies of the local intensity on the emission angle θe (e.g., limb darkening effects)
and the radius re are described by IEe (re,θe). This is the same strategy used by the kerrdisk-
model (Brenneman & Reynolds, 2006). Inserting this into Eq. 3.14 and evaluating the delta

39



4 The relline Model

function then gives

IobsE (θo)=
rout∫

rin

πg3re f (g
∗, re,θo)

Ee(gmax− gin)
√

g∗(1− g∗)
IEe (re,θe)dre (4.2)

where the transfer function f is again calculated using the code of Speith et al. (1995), adapted
for negative spin.

As could be seen in Sec. 3.5, the kerrdisk model exhibits “spikes” for special parameter
combinations (see also Fig.4.3). The origin of these spikes has now been understood and is
a peculiarity of the Green’s function approach. This can be seen when looking closer at the
emission of one radius r and its contribution Iobs

Ei
(r) to a certain energy bin i ranging from Elo

to Ehi. Using Eq. 4.2 this leads to

IobsE i
(r)∝

Ehi∫

Elo

g3 f (g∗)

(gmax− gmin)
√

g∗(1− g∗)
dE , (4.3)

where it can be seen that the integrand diverges at g∗ = 0 and g∗ = 1, i.e., at the two points
on the ring where the minimum and maximum energy shifts occur with respect to Ee. Hence,
for values of g∗ very close to 0 or 1 the intensity is overestimated due to a numerical error.
As the divergences imply that these points contribute significantly to the overall luminosity,
great care has to be taken for the numerical integration. In order to avoid the problems seen
in the kerrdisk model, we use a different approach, employing that the dependence of f (g∗)
(see Eq. 3.13) close to these points can be calculated analytically as

f (g∗ → 0)∝
√

1− g∗ and f (g∗ → 1)∝
√

g∗ . (4.4)

This leaves the integrand of Eq. 4.3 with a divergence of the kind 1/
p
x for x→ 0. Assuming

that g∼ const. in this energy bin, the integration can be performed analytically, leading to

IobsE i
(r)∝ 2

(√

Ehi−
√

Elo

)

. (4.5)

As the above assumption might not be valid for the whole bin, we define a criterion by choosing
a sufficiently small value of h such that it is legitimate to use Eq. 4.5 for g∗ ∈ [0,h] and g∗ ∈
[1− h,1]. The normalization factors are then determined from Iobs

h
(r) and Iobs1−h

(r). For g∗ ∈
[h,1−h], an adaptive Romberg method is chosen to solve Eq. 4.2 directly. Choosing a value of
h= 2·10−3 serves to avoid the spikes and keep the advantages of the Green’s function approach
(see Fig. 4.1).

In order to allow fast real time fitting of observational data, the important quantities like the
transfer function f and the emission angle θe are stored in a table. The 22MB sized table con-
tains values for combinations of 30 different spins from −0.998≤ a≤+0.998 and 20 inclination
angles from 0◦ ≤ θo ≤ 89◦. For a given parameter combination (a,θo), the other parameters,
namely re, θe, and g, are interpolated. Hereby the grid of the spin is not equally spaced, but
has smaller steps for a→ 0.998, as the transfer function changes more rapidly in this direction.
The actual choice of the (a,θo) -grid has been tested intensively to guarantee a correct interpo-
lation for the whole parameter space. For each combination of (a,θo), a logarithmic grid of 100
radii from the ISCO to 1000 rg models the accretion disk. For providing a smooth line profile,
the relline model interpolates from these values onto an intrinsic grid with 2500 radial bins.
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Fig. 4.1: Lines profiles for different combinations of inclination angles θo (a and b), spin a (c),
and emissivity α (d) evaluated on a fine grid. The accretion disk truncates at 400 rg, and the
line energy is Ee6.4keV. See the text for further details.

The emissivity of the emitted intensity is taken into account in form of a broken power law
(similar to Dovčiak et al., 2004)

I ∝
{

r−α1 for r ≤ rbr

r−α2 for r > rbr
. (4.6)

This parametrization is used in all modern line models, but could be readily changed. More-
over, there are currently three angular directionality laws available: Isotropic emission, limb-
darkening (Laor, 1991) and limb-brightening (Haardt, 1993). As explained above, our approach
allows to take easily any other angular dependency into account. Finally the model integrates
over all radii and returns the total intensity of the accretion disk.

Line profiles calculated with the relline-model for various parameter combinations are
shown in Fig. 4.1. No spikes are visible at all, despite the highly resolved energy grid. Hence,
the above described integration technique efficiently calculates the line without numerical di-
vergences. Besides tiny wiggles in large red wings (Fig. 4.1a), the line shape is very smooth for
the whole parameter range. These results show that by using special interpolation techniques,
the small table covers the whole parameter range sufficiently in order to calculate profiles even
much smoother than required for data analysis.

Figure 4.1a shows a typical case for maximal spin and α= 3. As the disk reaches very close
to the black hole, large red wings are seen for all inclination angles. This case is especially
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Fig. 4.2: The reflionx-model (black) for ξ= 10erg cm/s (left), ξ= 100erg cm/s (middle), and
ξ= 1000erg cm/s (right) convolved for different ionizations ξ. The convolution of the reflected
spectrum with the relconv-model is shown for spin a = 0.998 (red) and a = −0.998 (blue). A
typical emissivity α= 3 and inclination angle θo = 40◦ are assumed.

tough to calculate, as due to the focused emission from the inner parts and the strong redshift
in this region each small ring of the accretion disk contributes at a different energy. The tiny
steps that can be seen in the profiles, especially for low inclinations, originate from the fact that
the accretion disk is made out of a finite amount of rings and therefore appear only in a highly
resolved grid. This explanation can be justified in Fig. 4.1b, as in this case all parameters
are the same, except that the spin of the black hole is now maximally negative. The resulting
lines are narrower, which leads to profiles without any visible wiggles. Moreover, it can be
nicely seen in the figure that by changing the inclination the overall line shape and not only
the position of the peaks can be totally changed. In Fig. 4.1c the model is shown for the whole
range of possible spins of the black hole. Again the shape is smooth and broadens as expected
with increasing spin. Note that the sharp edges at the blue peak of the line are really expected
(see Fig. 3.6). The effect of a changing emissivity law is illustrated in Fig. 4.1d, for maximal
negative spin and an inclination of θo = 40◦. It should demonstrate that the algorithm has
no problems in describing the sharp peaks present for low emissivities. Additionally one can
see how the line changes from a clearly double peaked structure to a very broad, asymmetric
shape, only by changing the emissivity of the accretion disk.

4.2 USAGE IN DATA ANALYSIS

The model function relline explained above can be added to data analysis software such as
ISIS (Houck & Denicola, 2000) or XSPEC (Arnaud, 1996). It can be downloaded from http://

www.sternwarte.uni-erlangen.de/research/relline/. News such as bug fixes and recent
developments can also be found there. In order to compile the model successfully, at least the
XSPEC version 12.6e needs to be installed. This is mandatory, as the model is written in For-
tran 90, which has only recently been supported by XSPEC. One specialty of the model is that
the radius can be given in two units. For all radial parameters, negative and positive values
are possible. Whereas a positive radius means it is given in units of rg, a negative sign means
the radius is in units of rms. In order to switch from one to the other parametrization, the
hard limits have to be changed accordingly such that either all values are positive or negative.
Otherwise the fitting algorithm might not work properly. Especially the radius in rms is useful
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Comparison to other Models
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Fig. 4.3: Comparison of the relline model (blue) with (a) the exact line profile, (b) kyrline,
(c) kerrdisk, and (d) the laor model for an emission line at E = 6.4keV around a black hole
with a = +0.998, an inclination angle of θo = 40◦, an emissivity r−3, and an outer radius of
50 rg.

for fitting, as e.g. it restricts the inner radius of the accretion disk always to be at the ISCO
when freezing rin =−1, regardless if the spin parameter changes.

Additionally to the rellinemodel, an implementation as a convolutionmodel called relconv
is provided. It is used for calculating the relativistic smearing of continuum components. This
means it can be used together with models like reflionx (Ross et al., 1999; Ross & Fabian,
2005), which predict the emitted spectrum from the accretion disk, including several elements
and ionization stages.

Figure 4.2 shows the effect of the convolution for different ionizations of the accretion disk.
The ionization parameter ξ parametrizes the disk from quasi-neutral (ξ ≈ 1) to fully ionized
(ξ ≈ 105). The plot illustrates nicely that the general relativistic effects induce a blurring of
the sharp emission lines. Moreover it shows that the spin of a black hole not only affects the
peaks of the line, but also part of the continuum shape. For higher ionizations the peaks in
the reflected spectrum get broader and therefore the relativistically convolved spectrum even
more blurred.

Currently relline is already used by several astronomers. For example Egron et al. (2011)
fitted the broad line of the neutron star MXB 1728−34. In this work it is used for a = 0,
together with other line models. Moreover Duro et al. (in prep.) are analyzing the relativistic
emission feature in Cygnus X-1 at the moment. In Sec. 6.1 it is shown how relconv together
with reflionx enables us to constrain the the spin by analyzing a simultaneous XMM-Newton
and RXTE observation.

4.3 COMPARISON TO OTHER MODELS

Figure 4.3 shows a comparison of the relline model to other models for relativistic lines
commonly used in X-ray astronomy. A comparison of the model with an exact numerical eval-
uation of Eq. 3.14 that does not make use of precalculated quantities and interpolation shows
that there is no significant deviation between both approaches (Fig. 4.3a). In addition, for
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4 The relline Model

a ≥ 0 the produced shape is very similar to the kyrline model, which uses a table a factor 10
times larger and a Gaussian emission profile instead of a delta function (Fig. 4.3b). This result
shows that for a ≥ 0 and when it is sufficient to use the limb-darkening law of Laor (1991) or
the limb-brightening law of Haardt (1993), both models can be used with confidence. Moreover,
the rellinemodel was compared to a non-public code from the ky-family, which allowed to plot
line profiles for negatively spinning black holes. For all available and reasonable parameter
space both models were in perfect agreement (Dovčiak, priv. comm.).

For completeness, Fig. 4.3c and Fig. 4.3d compare the exact profile to the kerrdisk and the
laormodel. As already explained above, the spikes in the former model are due to divergences
in the integration of the transfer function. We note, however, that if the line is evaluated on an
energy grid appropriate for a Silicon detector, these spikes will be averaged out and therefore
have no effect on any of the published results. The laor model, on the other hand, shows
strong deviations from the correct line shape, which are caused by the very coarse energy grid.
Especially in the tail of the line these deviations are large enough that they could bias model
fitting. For this reason, we caution against using this model in data analysis work.
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CHAPTER 5

THE LAMP-POST GEOMETRY

The formalism for tracing photons in the vicinity of rotating black holes was extensively in-
vestigated in the previous chapters. We are able to trace the photons from the disk to the
observer, even in the case of negatively spinning black holes. Simulating the shape of broad
emission features, we have to assume an emissivity profile of the disk. The canonical value for
a standard Shakura & Sunyaev (1973) disk is

I(r)∝ 1

r3

(

1−
√

rin

r

)

, (5.1)

which means that in the outer parts the emissivity is proportional to r−3 and gradually flat-
tens towards the inner edge of the disk (rin). In many observations (e.g., MCG−6-30-15,
Wilms et al., 2001), the emissivity profile is observed to be extremely steep at the inner radii
of the disk. Hence, a better model of the accretion disk emissivity itself or a different geomet-
rical setup of the system is necessary to explain the prevailing physics properly. In addition to
the spectral analysis, also variability studies of the broad iron lines pose a problem for stan-
dard models assuming a corona above the disk. In these studies, the time variability of the
continuum flux, i.e., the primary hard X-ray radiation, is compared to the flux in the lines,
which are produced by the reflected radiation. Hence, the connection between the primary and
the reflected radiation is probed in this way. Measurements in sources such as MCG−6-30-15
(Martocchia et al., 2002a) and NGC 3516 (Iwasawa et al., 2004) show an anti-correlation in
flux between the primary hard X-rays and the reflection in the lines. In contrast to that, one
would expect the opposite behavior in the case of a corona illuminating the disk: A more lu-
minous primary source produces more photons that irradiate the accretion disk and therefore
induce a stronger reflection component (Martocchia & Matt, 1996). Martocchia et al. (2002a),
Miniutti et al. (2003), and Vaughan & Fabian (2004) use the strong light bending in the “lamp-
post” geometry to explain the observed anti-correlation in MCG−6-30-15. In this model, first
mentioned by Martocchia & Matt (1996), the hard radiation is assumed to be emitted from a
source on the rotational axis at height h above the black hole. For a schematic overview see
Fig. 5.1. The anti-correlation between the continuum and the reflection component is explained
in this model by the strong light bending: For a primary source very close to the black hole,
most of the photons are focused on the accretion disk, producing a strong reflection compo-
nent. Therefore less photons are left over to contribute to the continuum component, which
is directly emitted towards the observer (Miniutti & Fabian, 2004). For an increasing height
of the hard X-ray source the effect gets weaker and therefore more photons can escape, which
strengthens the continuum radiation, but weakens the reflected flux (Miniutti, 2006).

In the following we will use the numerical methods developed in the previous chapters
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δ

δi

h

ri

Fig. 5.1: Plot of the jet-
base geometry, showing
a photon track (red)
emerging from the pri-
mary source (blue) at
height h above the black
hole. The photon hits the
disk at distance ri from
the black hole under an
angle of δi. Note that δi
is measured in the rest
frame of the accretion
disk.

to investigate the irradiation of the accretion disk in the “lamp-post” geometry. As a good
physical explanation of this hard X-ray source on the rotational axis is the base of a jet
(Markoff & Nowak, 2004), we will also call this the “jet-base” geometry. This interpretation
is encouraged by the fact that direct and reprocessed emission from such a jet base is equally
capable in describing the observed X-ray broad-band spectrum as a corona above the accretion
disk (Markoff et al., 2005). Moreover this geometry would allow to explain the correlation be-
tween observed radio and X-ray flares of Microquasars such as GX 339-4 (Corbel et al., 2000)
or Cyg X-1 (Wilms et al., 2007). Additionally, Maitra et al. (2009) used this setup to success-
fully described the broadband spectrum (from radio throughout X-ray) of XTE J1118+480 and
GX 339-4.

Relativistic photon trajectories in the lamp-post geometry have first been investigated by
Martocchia & Matt (1996) in order to explain a very large equivalent width of the iron Kα

line in some sources. A more detailed discussion of effects in this geometry is presented by
Martocchia et al. (2000), which includes overall spectra and dependencies on the spin. In his
PhD thesis, Dovčiak (2004) further investigated this setup and included it in the XSPEC model
KYLCR for fitting observational data (Dovčiak et al., 2004). As they cannot be found in the
above mentioned references, the important equations and properties are derived in detail in
the following section.

5.1 THE EQUATION OF MOTION

5.1.1 BASIC EQUATIONS

For all calculations presented in the following, we make use of the general equations derived
in Sec. 2.2.2. In order to simplify the equations, all units containing a length scale are given in
units of the gravitational radius rg. Remembering that the equation of motion (Eq. 2.31) only
has solutions for Vθ ≥ 0 and using the fact that each photon emitted by this source has to start
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The Equation of Motion

at the rotational axis (θ = 0), leads to the constraint

Vθ

∣
∣
θ=0 =−λ2 !

≥ 0 =⇒ λ= 0 . (5.2)

This means that we only have to consider photon trajectories with zero angular momentum.
Hence the difference in the photon trajectories are determined by the remaining parameter q.
Using similar considerations as in Sec. 3.1.1, we can calculate the emission angle δ (as defined
in Fig. 5.1) corresponding to a certain q-parameter for an emission at height h by

sinδ=
|ph,∥|
|ph|

=
(ph)µ(n

(θ)
h
)µ

(ph)ν(uh)ν
=

[√

Vθ/Σ
]

θ=0
−ut

h

=
p
h2−2h+a2

h2+a2

√

q2+a2 , (5.3)

where (n(θ)
h
)µ is the normal vector in θ-direction. In the above equation we used that

ut
h =

√

h2+a2

∆(h)
(5.4)

is the only non-zero component of the four-velocity here. Its value can be easily derived by
using the normalization criterion

−1 != uµu
µ =

(

ut
h

)2
gtt(h)=−

(

ut
h

)2 ∆(h)

h2+a2
. (5.5)

As argued in Sec. 5.2, we are only interested in trajectories for which q2 > 0. From Eq. 5.3, we
can deduce that this condition means that all trajectories which fulfill

sinδ≥
|a|

p
h2+a2

√

1−
2h

h2+a2
, (5.6)

are reasonable solutions. Examining the last part of the square root closer leads to the fact the
above condition is only defined for h≥ 1+

p
1−a2. But this is just the requirement that h≥ r+,

i.e., the primary source has to be outside of the black holes event horizon. This condition is
readily fulfilled for any astrophysical source of radiation.

The q-parameter for an arbitrary δ can be easily derived from Eq. 5.3 to be

q=

√

sin2δ(h2−2h+a2)

h2+a2
(5.7)

Amap of the q-parameter for combinations of the height of the primary source and the emission
angle can be seen in Fig. 5.2. The black regions are combinations of (h,δi), which do not have a
solution, as Eq. 5.6 is not fulfilled. For a=0 the q-parameter always satisfies Eq. 5.6, but with
increasing spin the “forbidden region” is growing. For our purpose this region is not interesting,
as these photons will never hit the accretion disk. Note that we only have to consider a ≥ 0,
as long as the system only consist of the black hole and the primary source. The meaning of a
negative spin is not given until we consider parameters connected to the accretion disk, which
would have to be couterrotating with respect to the black hole in this case.

The two extreme cases of a non-rotating BH (Fig. 5.2, left panel) and a maximally rotating
BH (Fig. 5.2, middle panel) show a very similar behavior in q. In both cases q increases almost
identically with both, emission angle δ and height h. The ratio (Fig. 5.2, right panel) proves
this point, as the q-parameter differs only very close to the forbidden region. As even photon
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Fig. 5.2: The left and the middle panel show a 2d-map of the q-parameter for different com-
binations of (h,δi) for a non rotating black hole (left) and a maximally spinning black hole
(middle). The panel to the right displays the ratio between the q-parameter for a = 0.998
and a = 0. The black areas in the plots mark the combinations of (h,δi), which do not have a
reasonable solution for q.

trajectories with q-parameters close to this region won’t hit the accretion disk, these differ-
ences do only play a very minor role when considering the incident radiation on the accretion
disk.

Assuming we already have solved the equation of motion and know the radius at which the
photon hits the disk, we can derive more physically interesting parameters. One important
quantity is the energy shift gi the photon exhibits during its way. As the initial four-momentum
together with the corresponding four-momentum on the accretion disk are known, the energy
shift can be readily written down in analogy to Eq. 3.7:

gi =
Ed

Eh

(pd)µu
µ

d

(ph)νu
ν
h

=
ut
d

ut
h

=
(

ri
p
ri+a

)p
h2−2h+a2

p
ri

√

r2i −3ri+2a
p
ri
p
h2+a2

. (5.8)

The second quantity of physical importance is the incident angle δi of the photon when it hits
the accretion disk at radius ri.

cosδi =
p⊥
|p|

=
(pd)µ

(

n
(θ)
d

)µ

(pd)ν(ud)ν

∣
∣
∣
∣
θ=π/2

= q

riu
t
d
(ri,a)

(5.9)

The incident angle is important for accretion disk models, as it determines which depth of a
photon can reach. By assuming the same optical depth for all δi, the photon travels the same
path in the disk, but clearly reaches different depths depending on the incident angle. Hence,
regions with different incident angles might exhibit a different ionization structure, which has
an impact on the reflected spectrum.

5.1.2 NUMERICAL METHODS

The value of q corresponding to a specific emission angle δ obtained by Eq. 5.9. Hence we can
solve the equation of motion for a photon emitted under this angle from the primary source
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Photon Trajectories

(h,0) to any point (r,θ). The equation of motion for this case then reads

r∫

h

dr′
p
Vr′

︸ ︷︷ ︸

I
r
h

=
θ∫

0

dθ′
√

Vθ′

︸ ︷︷ ︸

I
θ
0

. (5.10)

This equation is similar to the equation for trajectories from the accretion disk to the observer
(Eq. 2.31), but the limits are different. Moreover, Vr and Vθ are now fully determined as
we know both λ and q. This means in practice that by specifying θ, we can calculate the
corresponding distance r, which has to be done numerically, since the equation of motion has
no analytic solution. In detail the upper limit of the radial integration r is iteratively changed,
until the two integrals are equal within a certain precision.

In order to calculate the integrals I
r
h
and I

θ
0 , I modified the routines INTGVR and INTGVT

of the code provided by Speith et al. (1995, see also Chap. 3). The routine INTGVT calculates
the integral I

θ
π/2. Thus the integral corresponding to any arbitrary angle θ is simply

I
θ
0 =I

θ
π/2−I

0
π/2 . (5.11)

Moreover no turning points in the θ direction are present, as photons, which initially fly to-
wards the disk, will not exhibit a turning point before crossing the equatorial plane and thus
before hitting the accretion disk.

INTGVR is used to integrate the radial part of the equation of motion. Instead of calculating
a trajectory to an observer at infinity like in Chap. 3, we now start at the primary source above
the black hole. Following Speith et al. (1995), I transformed the integral to an integration
over R2 = ±(1/r−1/r′), where the upper sign is chosen for r < h and the lower sign for r > h,
respectively. In the case of r < h this leads to

I
r
h =

∫
√

1
r
− 1

h

0

2RdR
√

Vr(R)
. (5.12)

The additional integral when a turning point in r-direction occurs, is automatically calcu-
lated correctly by INTGVR, as this integration is the same, regardless of the geometry (see
Speith et al., 1995, for details). Note that for emission angles δ > π/2 the sign in front of the
radial integration changes, as this implies that the photon initially moves away from the black
hole.

5.2 PHOTON TRAJECTORIES

In this section we focus on the path the photon takes in curved spacetime. Therefore we use
the above described routines to solve the equation of motion (Eq. 5.10), where the integral in
θ-direction is determined with the function INTGVT according to Eq. 5.11 and the integral in
r-direction with INTGVR (Eq. 5.12), respectively.

Figure 5.3 shows the photon trajectories for different heights of the primary source. As
expected, it is clearly visible in both panels that the closer the photons get to the black hole, the
more curved the trajectory is. Therefore the photons emitted from the primary source closer
to the black hole are focused more strongly onto the accretion disk like already mentioned
by Martocchia & Matt (1996). At height h = 2.5rg, even photons that are emitted parallel
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Fig. 5.3: The photon tracks (red) for photons emitted from the primary source (blue), which hit
the accretion disk. The black hole, spinning with a=0.998, is to scale.

to the accretion disk hit it closer than 5 rg, i.e. still in the regime of extreme gravity. This
configuration gives evidence to the observed anti-correlation in flux between continuum and
line emission (see above): As most of the photons are focused onto the disk, the reflected flux
is enhanced at costs of the continuum flux. On the contrary, this implies for a black hole with
maximal negative spin that most of the emitted photons from such a primary source will not
hit any part of the accretion disk, as the inner radius of its surrounding disk is larger than
9 rg (see Eq. 2.29). These photons are either caught by the black hole or contribute to the
continuum radiation on the other side of the accretion disk. As the current model (Miniutti,
2006) does only account for a maximally rotating black hole, further analysis has to be done
in order to estimate the importance of a different spin for the timing analysis. Nevertheless
we can see from the above results that the inner radius, and therefore the black hole’s spin,
should play a role when measuring and interpreting the fraction of reflected radiation.

The amount of reflected radiation is indeed crucial, as, e.g., the different reflection frac-
tions can be attributed to certain processes like “Synchrotron dominated” or “Synchrotron-
Self-Comptonization dominated” in jet models (Markoff & Nowak, 2004; Markoff et al., 2005).
Note that although Sec. 3.4 explicitly presented the effects of a changing spin, it is also shown
that apart from a larger inner radius of the accretion disk the changes are small. Therefore
we would not expect that the photon trajectories change dramatically with spin, but only the
inner edge of the accretion disk. This argumentation is strengthened by Fig. 5.2, which shows
that the difference in the q-parameter, which totally characterizes a certain trajectory in the
case of a lamp-post model, is small.

Moreover it should be noted that the coordinates in Fig. 5.3 are given in the Boyer-Lindquist
coordinate system. As explained in Chap. 2, the observer is in a locally non-rotating frame and
thus rotates with the black hole. The angle θ and the distance to the black hole r are used in
this coordinate system to parametrize the basis vectors. Because of the complexity of space-
time, the Cartesian coordinates of the photons at each point of the trajectory cannot be derived

50



Disk Illumination

from simple geometrical considerations, but are related to the Boyer-Lindquist coordinates by
an elliptical transformation (see Eq. 2.2). Hence, for a large distance to the black hole (r≫ a)
we recover our geometrical relationship from flat space, but close to the black hole there are
differences. These differences also vanish for a slowly rotating black hole, which can be easily
seen in Eq. 2.2 for a→ 0.

5.3 DISK ILLUMINATION

Having described the whole photon trajectory in the previous section, we will now focus on the
point where the photon actually hits the accretion disk. The radial dependence of the irradi-
ated intensity provides a crucial information for modeling the local physics of the disk. This
intensity can be calculated by using the same numerical methods as described in Sec. 5.1.2.
Therefore we simulate for equally spaced intervals of emission angles δ, i.e., for isotropic emis-
sion, the corresponding impact radii ri(δ). As the intensity is directly proportional to the den-
sity of incoming photons, we can use the spacing between the impact points to derive

Ikerr ∝
1

ri(δi+1)− ri(δi)
, (5.13)

where δi is the i-th emission angle of the equidistant interval.

5.3.1 COMPARISON TO FLAT SPACE

In order to better understand the differences of the fully relativistic approach, we will first
compare the simulated intensity to the same geometry, but assume flat space. For this case the
intensity can be calculated analytically. If we concentrate on one photon emitted under δ at
height h, we can express the impact point ri by using the delta function δ

(

ri/h− tanδ′
)

. This
allows us to integrate over all angles and calculate the intensity on the disk for a certain ri:

Iflat(ri,h)=
∫2π

0
δ

[

ri/h− tanδ′
]

dδ′

=
∫2π

0
cos2(δ′) ·δ

[

arctan(ri/h)−δ′
]

dδ′

=
1

1+ (ri/h)
2

(5.14)

Before being able compare this to the simulated intensity, the normalization has to be done
correctly. This is very crucial, as due to light bending, there might be more photons hitting
the disk in curved spacetime than in flat space, although the primary source emits the same
amount of photons. This can be easily understood, as the emission angles between the curved
and the flat space for photons which ought to hit the same disk, are certainly different (see
curved tracks in Fig. 5.3). Therefore the condition for a equally bright primary source trans-
lates to

1

∆δkerr

∫rout

rin

Ikerr dr
!=

1

∆δflat

∫rout

rin

Iflatdr , (5.15)

where ∆δ is the difference between the maximal and minimal emission angle corresponding to
the outer and inner edge of the accretion disk.
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Fig. 5.4: Evolution of I(r) in the dif-
ferent geometries for a height h =
4.5 rg of the primary source above
the black hole. It is visible that
a different spin has almost no ef-
fect, except that the inner radius
of the accretion disk must be at
a larger radius for a non-rotating
black hole.

The evolution of the intensities with r can be seen in Fig. 5.4. As already supposed from the
almost constant q-parameter for different spin (Fig. 5.2), the intensity on the accretion disk
does almost not depend on the spin of the black hole at all, although a primary source very
close to the black hole (h = 4.5rg) was used in the simulation. Clearly the inner radius of the
accretion disk is much larger in the non-rotating case and therefore the expected total intensity
irradiating the disk mainly depends on the inner radius of the disk. The ratio between the flat
and the relativistic intensity can be seen in the lower panel of Fig. 5.4. Here it becomes obvious
that a much larger fraction of the intensity irradiates the innermost parts of the disk. This is
indeed interesting, as here most of the relativistic effects take place and hence this is where the
shape of the spacetime is imprinted in the photon spectrum. Thus a higher intensity of photons
irradiating these regions means that we obtain more information of the curved spacetime in the
measured spectrum, as a larger fraction of the measured photons exhibits strong relativistic
effects.

The two-dimensional map in Fig. 5.5 shows how the ratio Ikerr/Iflat changes with height of
the primary source. As the spin of the black hole has no large effect (see Figs. 5.2 and 5.4)
apart from changing the radius of marginal stability, it was chosen to be maximal. Although
the ratio quickly converges towards unity for an increasing height, it is remarkable that there
is still an enhanced irradiation of the disk of roughly 10% at h = 20 visible in the 2d-map of
Fig. 5.5. This rapid decrease would be indeed an interesting result, as the different geometries
are mainly distinguished by the radial behavior of the emitted intensity and not by different
normalizations. Hence, the shape of a fluorescent emission line should be sensitive for pri-
mary sources at low heights. In the case of MCG−6-30-15 this criterion would be fulfilled, as
measurements suggest a height of 3–12 rg for the hard X-ray source (Martocchia et al., 2002a;
Miniutti et al., 2003).

One way of getting closer to a simple description of the processes in the strong gravity
regime, is trying to approximate the evolution of parameters in curved space by functions
holding true in flat space. For large distances from the black hole, where space is almost flat,
the former relativistic behavior has to converge towards the one of flat space. In the following
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Fig. 5.5: Ratio of the intensity, Ikerr, for a spacetime around a maximally rotating black holes
to the expected intensity in flat spacetime Iflat. Hence the plotted quantity is the same as in
Fig. 5.4, but for a continuum of heights. The border between the red and the blue regions
roughly marks the different areas where the intensity is enhanced by the Kerr metric and
where it is reduced. In the right panel, the ratio for a height of h= 3.5 rg, h=6 rg and h=14 rg
of the primary source is plotted in detail.

we will try to approximate Ikerr (see Fig. 5.4) by the formula

I(ri)=N ·
1

1+ (ri/h)γ
, (5.16)

where we recover the evolution of the incident intensity in flat space from Eq. 5.14 for a nor-
malization N = 1 and γ = 2. Now we use the simulated values of Ikerr and try to fit I(ri) of
the above formula to Ikerr(ri). In order to do a proper χ2 analysis, the uncertainty of the data
points was (arbitrarily) defined to be 0.01

p
I and thus 1% of the Poisson noise. This means that

the absolute value of χ2
red is not a useful quantity, but it is nevertheless a measure for the good-

ness of the fit. The main results can be seen in Fig. 5.6. By looking at the χ2
red-panel, one can

clearly see that the fit improves a lot for growing height and thus a flatter space. This result
proves the above statement that we recover the flat space behavior for large distances from
the black hole. Moreover in the case of a low primary source, the best fit solution for a non-
rotating black hole (γ = 2.3) is closer to flat space than for a maximally rotating one (γ = 2.7).
The most important result of Fig. 5.6 is that the overall behavior of curved spacetime can be
approximated by a larger γ, i.e. a steeper emissivity and hence more photons that are focused
on the inner, highly relativistic regions of the accretion disk. Additionally, the deviations are
strongest for low heights. Transformed to a measured spectrum, i.e., the shape of a broad
emission line, this result implies that the asymmetry of the line profile should be a measure
of the height of the primary source. The flux variability observations of MCG−6-30-15 indeed
connect the very asymmetric line shape to a primary source of low height (Martocchia et al.,
2002a; Miniutti et al., 2003; Vaughan & Fabian, 2004).
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5.3.2 THE ENERGY SHIFT

Due to the effects of strong gravity, the energies of the emitted spectrum will be shifted de-
pending on the photon’s trajectory. Thus we would expect the incident spectrum to change for
different radii ri. As an incident photon can only contribute to fluorescent emission if it has
an energy above the ionization energy of a certain element, a change in spectral shape also
implies a change in the amount of fluorescent emission. Hence, the strength of the fluorescent
emission line depends on the incident spectrum of the accretion disk.

Figure 5.7 shows the energy shifts g = Ei/E of photons emitted at different heights, when
they hit the disk at ri. The color scheme indicates the direction of the energy shift: Blue means
that the photons gains energy, whereas the red color implies that it looses energy. Most of the
image is yellow, indicating that for most incident radii and heights there is only a minor energy
shift. The most remarkable region is the narrow blue part at very low radii. Almost regardless
of the height of the primary source, a photon hitting the disk at ri < 3rg is shifted between
three and eight times of its energy. A larger height slightly enhances this effect.

This extreme blue-shift of energies for low radii introduces a strong change of the incident
spectrum with r. In the simplest case, this implies that at low radii the amount of ener-
getic photons is larger than at higher radii. As the strength of a fluorescent emission line
is proportional to the number of photons above the ionization edge, this blue-shift has direct
consequences on the emissivity profile of the disk: An extreme blue-shift means that a larger
number is above the edge and thus the fluorescent emission is enhanced for these regions,
additionally to the geometrical effects discussed in Sec. 5.3.1. Thus the emitted spectrum at
the primary source needs to be taken into account and shifted according to ri and h. As the
change of the spectrum due to such a large energy shift is certainly not negligible in all cases,
this result shows that a fully relativistic treatment is necessary, although the intensity could
be described fairly well by a larger γ-parameter, as determined in Sec. 5.3.1.
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5.3.3 THE INCIDENT ANGLE

An additional quantity important for any realistic ionization model is the incident angle δi of
the photon in the rest frame of the accretion disk (see Fig. 5.1 for the definition of δi). This is
easily convincing in a simple geometrical picture: A photon hitting the disk perpendicular can
reach much deeper layers of the accretion disk than a photon on an almost parallel trajectory
to the disk, when assuming the same optical depth in both cases. Hence, we would expect that
the reflected spectrum and therefore the line strength depend on the incident angle.

The incident angle for various combinations of heights and radii is plotted in Fig. 5.8. Note
that this angle is measured in the rest frame of the accretion disk and therefore not equal to the
tangent on the photon trajectory in Fig. 5.3 at the incident radius. Although for a stationary
observer in Boyer-Lindquist coordinates1, the photon hits the disk perpendicular (i.e. δi = 0),
the incident angle will always be greater zero in the rest frame of the disk due to the motion of
the disk.2 This introduces a “minimal incident angle” for a certain height, which can be seen
in Fig. 5.8, marked by the white line in the 2d-plot. A more thorough look at trajectories close
to this minimum reveals that it separates the the trajectories which exhibited a turning point
in r-direction (trajectories closer to the black hole) from the ones which do not. Following the
blue part to larger heights, it can be seen that this minimal angle gets lower and eventually
reaches zero for a primary source at an infinitely large distance from the compact object.

1Note that a stationary observer means that (s)he is at a fixed point in (r,θ)-space, which implies that (s)he is
rotating with an angular velocity according to Eq. 2.4 (see Sec. 2.1.2 for details).

2For illustration purposes this can be compared to a ball dropped onto a carousel from a point not on the rotational
axis: An outside observer will see it hitting the floor perpendicular, whereas an observer sitting in the carousel
will never measure the ball to hit the floor perpendicular (M. Böck & M. Hanke, priv. comm.).
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Fig. 5.8: The incident angle δi (see Fig. 5.1 for the definition) when the photon hits the accretion
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white line in the left panel marks the minimal incident angle for each height.

The distribution of emission angles reveals that the majority of the emission angles is rela-
tively large. It evolves from large values at the innermost few gravitational radii of the disk to
a region of low values (δi < 45◦), which grows in size with increasing height. For even larger
radii ri, δi increases again towards δi = 90◦ for ri →∞. This behavior is what one would expect
in flat space and thus meets the requirement that the simulated parameter converges towards
its value in flat space for large distances.

As shown in the previous Sec. 5.3.2, the innermost radii are the most important for line
diagnostics. Therefore the fact that photons tend to hit this part of the accretion disk at high
inclination angles, implies that the induced change to the ionization in these region influences
the line profile most.
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CHAPTER 6

CONCLUSIONS, ONGOING AND FUTURE

WORK

6.1 THE BROAD EMISSION LINE IN CYGNUS X-1
The 17.4 ksec XMM-Newton observation (Obs-Id: 0202760301) of Cygnus X-1 on 20th and 21th
of November 2004 belongs to the observations with the highest signal to noise ratio of a broad
emission line obtained for a Galactic source. During the observation the source was caught in
an intermediate state. See, e.g., Remillard & McClintock (2006) for more information on states
of black hole binaries. In order to achieve such a high data quality in the region of the strong Fe
reflection feature (4–8keV), the EPIC-pn detector was operated in the “modified timing mode”
(Kendziorra et al., 2004). For bright sources such as Cyg X-1, the limiting factor for a XMM-
Newton observation is the telemetry limit. In order to stay below the this limit, the MOS1
and MOS2 camera are turned off and only the counts in the region of interest are transmitted.
As the modified timing mode is suited to analyze the iron region, which is around 4–8keV
in the spectrum, only counts above an energy threshold of 2.8keV are transmitted. Due to
calibration issues of the modified timing mode, only data from 4–9.5keV were used for the
analysis. As this narrow energy band does not allow to model the continuum well, we use two
simultaneous RXTE observations with an exposure of 2.0ksec (Obs-Id: 90104-01-02-01) and
1.0 ksec (Obs-Id: 90104-01-02-00), respectively. The PCA and the HEXTE instrument onboard
the satellite cover an energy band from 4–40keV and 20–120keV, sufficient to constrain the
parameters of the continuum well. We are investigating the above described data set and it
will be published soon in form of a letter (Duro et al., in prep.). In the following, the current
status of the analysis is presented.

We describe the overall continuum of the spectrum with an exponentially cut off power law
(Sunyaev & Trümper, 1979) and the thermal emission of the accretion disk with the model
diskbb, using a fixed inner temperature of 0.5 keV. Additionally a narrow emission line orig-
inating from neutral iron reported, e.g., by Hanke et al. (2009) and Torrejón et al. (2010) was
taken into account. The reflection feature, which still cannot be described by the above compo-
nents, was modeled with the reflionx-model (Ross et al., 1999; Ross & Fabian, 2005) and con-
volved with relconv-model in order to account for the general relativistic effects (see Sec. 4.2).
In order to compensate the apparent charge transfer inefficiency (CTI) over-correction in the
XMM-Newton data, we had to apply a gainshift to the energy bins of the form E = E0/1.02.
Table 6.1 shows the important parameters, which resulted from fitting the data with the

above described model. For this fit we obtained a total χ2/d.o.f of 297/260, corresponding to
χ2
red = 1.26. Figure 6.1 shows the data and the best fit obtained with the above presented
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. . . . . . . . . . . . . . . cutoffpl . . . . . . . . . . . . . . .

Index Γ 1.75+0.03−0.02
Efold [keV] 280+50−30
normpl 1.59+0.09−0.10
. . . . . . . . . . . . . . . reflionx . . . . . . . . . . . . . . .

Abundance Fe/solar 2.0+0.1−0.3
Ionization ξ [erg cm/s] 550+60−40
normrefl

(

5.0+0.9−0.8
)

×10−5

. . . . . . . . . . . . . . . relconv . . . . . . . . . . . . . . .

Emissivity α 4.1+0.5−0.4
Spin a 0.86+0.03−0.04
Inclination θo [deg] 44+3−2

Tab. 6.1: Simultaneous fits to EPIC-pn,
PCA and HEXTE data sets with a model
consisting of an exponentially cut off
power law, disk black body emission and
a relativistically convolved reflection. The
total χ2/d.o.f is 297/260, corresponding to
χ2
red = 1.26.

100

10

1

0.1

1.1

1

0.9

50205 10010

1.1

1

0.9

C
ou

n
ts

s−
1
k
eV

−1
R
a
ti
o

Energy [keV]

R
a
ti
o

Fig. 6.1: Data of the simultaneous Cyg X-1 observation, consisting of data from the the EPIC-
pn camera (purple), the PCA (blue), and the HEXTE (red). The data and the best fit model
(black line) from Tab. 6.1 are shown in the upper panel. The middle panel shows the ratio
between the model and the data. In order to illustrate the effect of the reflected component,
the ratio between data and model is plotted without the reflection component in the lower
panel.
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Constraining Negative Spin

model.
Based on the preliminary results shown above, first conclusions are presented in the follow-

ing. First, the ionization parameter of ξ= 550erg cm/s for the reflection points at a moderately
ionized disk, which differs to the measurements by Miller et al. (2009) of ξ ≈ 104. The emis-
sivity index of α= 4.1+0.5−0.4 is in agreement with the first analysis of this data set (Wilms et al.,

2006). Moreover the inclination of θo = 44◦+3
◦

−2◦ of the accretion disk is consistent with the re-
ported inclination between 32◦ and 50◦ of the orbit of the system (Ninkov et al., 1987). Note
that there is no strong constraint that the accretion disk and the orbit of the system have to be
aligned. Nevertheless, we would expect similar values, as these systems are expected to evolve
towards the equilibrium state of aligned disk and orbit. The most interesting of the fit param-
eters is the spin of Cygnus X-1, which is found to be relatively high with a = 0.86+0.03−0.04. This
result is in contrast to Miller et al. (2009), who measure a non-spinning black hole with the
method of fitting the thermal continuum. Although our uncertainties on the spin are proba-
bly underestimated and require additional analysis for including systematic effects, the result
obtained for the spin seems to exclude a non-spinning black hole. Clearly this preliminary
statement has to be quantified and the analysis has to be extended to the three other observa-
tions of Cyg X-1 with similar quality and simultaneous RXTE coverage.

6.2 CONSTRAINING NEGATIVE SPIN

Amain issue of this thesis was the phenomena of a negatively spinning black hole. Not only the
resulting line profiles were presented, but the stability (King et al., 2005) and hints from AGN
(Volonteri et al., 2005) and GBH (Brandt & Podsiadlowski, 1995) evolution give strong evi-
dences for their existence and the necessity to consider negative spin (Dauser et al., 2010). We
have shown that lines from counterrotating disks are narrower than those from Schwarzschild
black holes, since the marginally stable orbit moves outwards as the black hole’s angular mo-
mentum decreases. Since these lines still have a slightly asymmetric shape, they are still
expected to be observable (see Sec. 3.4 and Dauser et al., 2010). Hence future observations
should explicitly test for negative spin. Therefore we provided a new model for data analy-
sis (Chap. 4). It was shown that our model has a more flexible scheme for the calculation of
line profiles for black holes of all possible angular momenta and for arbitrary emissivity and
limb-darkening laws, which has a significantly smaller footprint in terms of the amount of pre-
calculation required. Comparison showed that its results are in agreement with the modern
relativistic line model of Dovčiak et al. (2004).

6.3 BROAD EMISSION LINES AS A PROBE FOR BLACK HOLE

SPIN

In conclusion, it was shown in this work that the predictive capabilities of broad emission
features are enormous. It was shown that this method is in principle capable of measuring
intrinsic parameters of the system like the spin of the black hole, the size of the accretion disk
and the accretion geometry. Additionally, quantities like the inclination of the system can be
inferred as well.

Because of the above reasons, the analysis of broad emission lines gives us deeper insight
into the black hole system and not only allows to measure the spin. But as could be seen in
Fig. 1.5, there are much less spin measurements with this method than by fitting the thermal
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disk component (see Sec. 1.3.1). Nevertheless, the great advantage of line measurements is
that the shape does not at all depend on the mass of the black hole, which is usually only
roughly known. Moreover the broad emission line is always present at the same energy and
therefore is in principle the same in GBH and AGN systems. Hence, with a more physically
motivated modeling of the reflection features, similarities and differences between these two
systems could be investigated.

Reducing the number of independently varying parameters would be a simple step towards
a more successful modeling. For example the inclination can be estimated or at least limited by
other observations, e.g., when eclipses are seen in the light curve. Most of the other parameters
are not accessible directly by measurements, and may even reach unphysical values in data
analysis. One example is the emissivity, which is assumed to be in the form of a phenomenologi-
cal power law in all available models. Observations of MCG−6-30-15, e.g., lead to unphysically
high emissivities (Wilms et al., 2001; Miniutti et al., 2007). Hence, either we do not under-
stand the physical implications of the current model, or a different approach has to be chosen
to parametrize the emissivity, ideally with more physical parameters. A step in this direction
was already made in Sec. 5 for the jet-base geometry. There we have chosen a geometry and
showed how the incident radiation onto the disk depends on the height of the primary source
above the black hole. Assuming we know the connection between the incident and the reflected
spectrum, e.g., by using the XSTAR-code (Kallman & McCray, 1982; Kallman & Bautista, 2001,
see below), this allows us to parametrize the former unphysical emissivity by the height and
the spectrum of the primary source. Additionally the spectrum of the hard X-ray source is
thought to be in form of a power law (Sunyaev & Trümper, 1979) and therefore we are only
left to determine the index. In case of a jet-base geometry, this index is connected to jet mod-
els (see, e.g., Markoff & Nowak, 2004; Markoff et al., 2005) and hence allows to find out more
about the whole system and establish a connection to radio measurements.

Speaking of the connection between the incident and the reflected spectrum above brings
us to another issue which requires a better physical description in the modeling process.
In data analysis, like for the AGN MCG−6-30-15 (Tanaka et al., 1995; Wilms et al., 2001;
Miniutti et al., 2007), mostly a single emission line with variable energy is chosen to describe
this connection. While working well for AGN, this approach is usually more complicated in
GBHs, as the accretion disk has a higher temperature and hence the ionization structure of the
disk changes. An advanced approach can be chosen, by using models like reflionx (Ross et al.,
1999; Ross & Fabian, 2005), which predict the reflected spectrum depending on the ionization
of the disk. This can be convolved with relativistic line models like relconv (Dauser et al.,
2010) to calculate the correct relativistic smearing. Still, in this approach the emissivity does
not have any connection to the incident hard X-ray radiation either, although it is obvious that
there has to exist a physical connection. In a rough estimate, an incident photon is able to
induce the fluorescent emission of a Kα photon, if its able to completely remove an electron
from the K-shell of the atom. Hence its energy has to lie above the ionization energy of this
electron, i.e., it has an energy higher than edge of the considered element. The Fe edge, e.g.,
is at 7.1 keV (Ross et al., 1996). Therefore the part of the incident spectrum above the edge
in the rest frame of the disk gives an estimation of the reflected intensity and especially its
radial dependence. Due to energy shifts close to the black hole, the incident spectrum can de-
viate strongly from the emitted spectrum, depending on the location and geometry of the hard
X-ray source. As the line profiles show that the shape is very sensitive to the emissivity index,
changes are good to get a better idea of the geometry of the system by analyzing this closer.

Although the above model offers a connection between the incident and the reflected emis-
sion, it still lacks an important physical process, as hard X-rays obviously influence the ion-
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ization structure of the accretion disk. Therefore a proper modeling has to simulate the radial
dependent effects induced by the incident photons. This could even serve to constrain the in-
ner edge of the disk. As explained in Sec. 3.4, the inner edge of the disk probed by analyzing
fluorescent emission features might not be the physical boundary of the accretion disk: If the
inner regions are fully ionized, no electrons remain to produce fluorescent emission and there-
fore we would measure a larger effective inner radius of the accretion disk. Modeling the radial
dependent ionization structure of the accretion disk would quantify this effect.

Summarizing the above thought implies that we need to do self-consistent calculations as-
suming a certain geometry (e.g., the lamp-post geometry) and then model the physics and sim-
ulate the observed spectrum. Only in this way are able to understand these systems, including
components like the relation to the formation of relativistic jets.

6.4 A SELF-CONSISTENT MODEL

As motivated above, the great goal for analyzing broad emission lines is to construct a self-
consistent model, which calculates the complete reflected spectrum of the accretion disk from
the spectrum of the primary source, using physically motivated parameters of the system. In a
first step this can be solved by using the irradiated spectrum on the disk, which can be readily
simulated by the techniques presented in Chap. 5, and estimating the fluorescent emission by
the fraction of the spectrum above the ionization edge of Fe Kα. The rellinemodel could then
simulate the observed spectrum, with the differences that the emissivity used in the model is
not only a fitting parameter, but depends on the incident spectrum, which is a more physical
quantity. Nevertheless, the accretion disk consists of several elements and therefore one would
require a more thorough treatment for a real self-consistent model. This could be achieved by
using the XSTAR-code (Kallman & McCray, 1982; Kallman & Bautista, 2001), which takes all
ionization states from H to Si into account. Hence, the reflected spectrum can in principle be
calculated from the incident radiation. The actual observed spectrum is then easily calculated
by taking the light bending and energy shifts on the way the the observer into account, e.g.,
with the relline-code.

Being equipped with a better understanding of the system itself is crucial for constraining
the source dependent parameters better. Hence, the systematic errors present in spinmeasure-
ments could be reduced, which would decrease the apparent scatter in its values (see Fig. 1.5)
and therefore increase the reliability of a single measurement. Furthermore, also the search
for negatively spinning black holes is facilitated by smaller uncertainties. High signal to noise
data for many AGN sources, which would be provided by future X-ray mission such as IXO,
together with an analysis providing reasonable uncertainties, statistics of the spin of SMBH
could be formulated. As there are already AGN with broad emission features found at high
redshifts, the evolution of the spin with time could also be analyzed, which would allow to
draw conclusions about galaxy evolution.
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