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Chapter 1

Introduction

High Mass X-ray binaries are important tools to obtain information about the structure of
massive O and B stars. These binary systems consist of such a massive star and a compact
object. They are, due to accretion of mass from the companion on the compact object,
some of the most luminous X-ray sources in the sky. Due to the orbital motion of the two
components different parts of the surrounding of the companion star are "X-rayed" by the
radiation. In this way it is possible to obtain information about structures in the stellar wind
of the companion stars and to test several models which describe clumps in stellar winds
of massive stars (see, e.g., Feldmeier et al., 2003; Dessart & Owocki, 2005; Oskinova et al.,
2007).
Cygnus X-1 is one of the most luminous X-ray sources and one of the best studied of those
High Mass X-ray binaries. Its light curves show sudden decreases in the count rate during
which the spectrum becomes significantly harder. These so called dips are most probable
due to photoelectric absorption. Studies of the distribution of the dips with the All Sky
Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE ) show that they occur more
often during superior conjunction of the black hole (Bałucińska-Church et al., 2000; Poutanen
et al., 2008). This leads to the conclusion that there is structure in the stellar wind which is
located close to the star only.
This work uses the monitoring data from pointed observations with the Proportional Counter
Array (PCA) of RXTE with a much better time resolution to improve the statistics of the dips.
A local criterion based on the hardness ratio is developed and tested to find absorption dips
in the hard state automatically. To test the criterion light curves with a given PSD are
simulated and a method is developed to simulate light curves with a given time lag.
With the help of the criterion a dip distribution with respect to orbital phase is obtained.
It shows that dips are most frequent during superior conjunction of the black hole. In
contrast to earlier investigations (see, for example, Poutanen et al., 2008; Bałucińska-Church
et al., 2000) no dips are found around orbital period φ ∼ 0.5 which is due to the new local
criterion. Furthermore a temporal evolution is visible in the dip distribution which cannot
be due a fault in the ephemeris. A Monte Carlo simulation and a Kolmogorov-Smirnov
test show that it is unlikely that this development is due to statistical effects. Moreover a
distribution of the dip length is measured showing that long dips are less frequent than
shorter ones. Additionally no evidence is found that longer dips consist of shorter ones. All
this information could be helpful for further understanding of the causes of dipping in Cyg
X-1 and the structure of the stellar wind of the companion star.

4



Chapter 2

Theoretical principles

2.1 The Rossi X-ray Timing Explorer

The data used in this work were obtained from the Rossi X-ray Timing Explorer (RXTE )
satellite. This instrument was launched on December 30, 1995 in a 580km orbit around
earth with a period of 90min and a inclination of 23 degrees. On board of RXTE there are
three experiments: The All Sky Monitor (ASM), the High Energy X-ray Timing Experiment
(HEXTE) and the Proportional Counter Array (PCA).
The ASM consists of three wide field of view scanning detectors (Levine et al., 1996). These
are able to scan most of the sky during an orbit. In this way monitoring data of all important
X-ray sources is gained by taking 90 second snapshots in three different energy bands from
1.5 to 12 keV. HEXTE consists of two large areas of sodium iodide scintillators which allow
measurements in the 15 to 200 keV range (Gruber et al., 1996; Rothschild et al., 1998).
The PCA contains five xenon proportional counter units (PCUs). It is sensitive in the 2 to
60 keV regime. The aim of the PCA is to measure light curves with high time resolution. It
is used for pointed observation in different timing modes (for more information see Jahoda
et al., 1996; Jahoda et al., 2006).

Figure 2.1: Schematic drawing of the Rossi X-Ray Timing Explorer with its three instruments ASM, HEXTE
and PCA (HEASARC, http://heasarc.gsfc.nasa.gov/Images/xte)
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6 2. Theoretical principles

2.2 Structure in the stellar wind of hot stars

Stellar winds of hot stars are still the subject of many studies. They are driven by resonant line
scattering of the star’s radiation on heavy elements (Castor et al., 1975). This process is highly
unstable to radial perturbations. The so called Line-Driven-Instability leads to structure in
the stellar wind, which otherwise would be thought to be homogeneous. Several models
(see, e.g., Feldmeier et al., 2003; Dessart & Owocki, 2005; Oskinova et al., 2007) describe
structures (called "clumps") in the stellar wind of such systems (see Fig. 2.2).

Figure 2.2: Expected distribution of clumps in the stellar wind of a massive star (after Oskinova et al., 2007,
Fig. 1)

Various observations sustain these clumpy wind models. High mass X-ray binaries like
Cyg X-1 are excellent objects to study the structure of stellar winds because of the accretion
process and the orbital motion. For example Vela X-1, which consist of the B supergiant
HD77581 and a neutron star, shows strong evidence for a clumpy wind through several
observations.
Sako et al. (1999) fitted several wind models to line spectra out of ASCA Solid-State Imaging
Spectrometer data. They found that the lines are only in accordance with the assumed mass
loss rate if they introduced cool dense clumps in a hot ionized medium. These dense clumps
occupy less than 5 % of the volume but contain over 90% of the mass.
Watanabe et al. (2006) derived the ionization structure of the stellar wind from Chandra
spectra. They performed a Monte Carlo simulation for the propagation of X-ray photons
through the stellar wind assuming different ionization structures. These simulations were
compared to the measured spectra. They found that strong fluorescent lines from lower
ionized elements, such as Fe and Mg, could be best modeled with cold dense clouds in the
more highly ionized surrounding gas, which can be interpreted as clumps.
Fürst et al. (2010) draw conclusions about the accretion rate by analysing the flaring behavior
of Vela X-1. They find structure in the mass accretion flow from the companion on the neutron
star. These variations in the accretion rate could be linked to density variations in the stellar
wind and thus to a clumpy structure. They speculate that the clump distribution is roughly
log-normal. Moreover they conclude that clump sizes and masses in high mass X-ray binaries
are comparable to those of supergiant fast X-ray transients.
If clumps get in between the line of sight to the X-ray emitting region, they absorb parts of
the spectrum, leading to a decrease in the count rate. These events called absorption dips
are observed as well in Vela X-1 (see Nagase et al., 1986) as in Cyg X-1 (see section 2.4).
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2.3 Cygnus X-1

Figure 2.3: Artists impression of the Cygnus X-1 binary system (ESA, http://www.spacetelescope.org/extras
/posters/cygnus_x1/)

Cygnus X-1 is a well studied binary which consist of the supergiant HDE 226868 and a
compact object. It was discovered in 1964 (Bowyer et al., 1965).
Walborn (1973) classified HDE 226868 as a O9.7Iab supergiant. The mass was determined
by Herrero et al. (1995) who used unified atmospheric models also including stellar wind.
They obtained a mass of M∗ = 17.8M� for HDE 226868. Because of the massive companion
the binary system is a so called High Mass X-ray binary.
The mass of the compact object was calculated as 10.1M� by Herrero et al. (1995) and
(8.7±0.8)M� from Shaposhnikov & Titarchuk (2007). Most authors agree that it is above the
Oppenheimer-Volkoff limit, thus Cygnus X-1 contains the first object which was believed to
be a black hole.
The compact object and the companion are orbiting around each other with a period of
5.6 days. Brocksopp et al. (1999) find a modulation with this period in all wavebands.
They also report of another periodicity in Cyg X-1 and attribute this superorbital period
of approximately 147 days to precession and/or radiative warping of the accretion disc.
Brocksopp et al. (2002) develop a model to explain the orbital modulation in the radio
emission. They invoked absorption of this emission in the stellar wind of the companion to
simulate light curves whose modulation is comparable to the observed one.
HDE 226868 has a strong radiation pressure driven stellar wind. This wind is focused onto
the black hole due to gravitation and because the companion star is nearly filling its Roche
lobe (Friend & Castor, 1982). This asymmetry of the stellar wind has to be taken into account
for analysis of the wind itself. Due to orbital rotation the distance X-rays propagate through
the stellar wind varies (see Fig 2.4).
This stellar wind driven accretion of mass from the companion on the compact object is the
reason why Cygnus X-1 is one of the most luminous known persistent X-ray sources.
The system shows large variability over a great range of time scales. First of all there are the
soft and the hard state with transitions on a monthly time scale, e.g., in 1996 May.

• The low/hard state, in which Cyg X-1 is most of the time. This state is typified by
a relatively low luminosity in the soft X-rays. The spectrum above 2 keV shows a
power-law with exponential cut off at approximately 150 keV.
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Figure 2.4: Density profile of the stellar wind with phase dependent line of sight from Earth (M. Hanke, priv.
comm.)

• The high/soft state, in which Cyg X-1 was for approximately 34% of the time from 2000
to 2006 (Wilms et al., 2006). It is characterized by a rather high luminosity in the soft
X-rays and a softer spectrum. The spectrum is dominated by thermal emission from
an accretion disk

For a more intensive discussion see Remillard & McClintock (2006).
On short time scales it is also very variable. In the hard state this is due to high-frequency
variability components of an Lorentzian whereas in the soft state red noise powerlaw flick-
ering is dominant (see Pottschmidt et al., 2003, for more information).
The coherence function is a measure for the degree of linear correlation between two light
curves (for a definition see Vaughan & Nowak, 1997). Pottschmidt et al. (2003) report that for
Cyg X-1 in the hard state the coherence is 1 over a great range of frequencies which means
that the two energy bands are fully correlated. They also state that during state transitions
the coherence is dropping. The coherence in the soft state requires further investigation.
Nowak et al. (1999) found a frequency dependent time lag ∆τ( f ) between the hard and soft
energy band which results in a phase shift of ∆φ = 2π · f ·∆τ between the corresponding
Fourier components.
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2.4 Absorption dips in Cyg X-1

The observed X-ray emission of Cyg X-1 sometimes shows sudden decreases (see Fig. 2.5).
These events called X-ray dips were already found in early observations (e.g., by Li & Clark,
1974). Kitamoto et al. (1984) found the K-absorption-edge of iron in the spectrum of those
dips and that during a dip the emitted radiation becomes harder, which means that low
energies are reduced in a stronger way (see Fig. 2.6). This leads to the conclusion that dips
are due to photoelectric absorption which has a larger cross-section at lower energies.
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Figure 2.5: RXTE-light curve of a dip in the 2–4 keV (black) and 13–15 keV (blue) band

In addition, Bałucińska-Church et al. (1997) observed that the source flickering is reduced
during the dips and that the root mean square variability amplitude is proportional to the
X-ray intensity. They state that this change shows that the strong variability in the 0.7–4.0
keV band is intrinsic to the source. The observation also strengthens the hypothesis of dips
being due to absorption.
First it was thought that dips occur only during or near orbital phase φ = 0, i.e. superior
conjunction of the black hole. Bałucińska-Church et al. (2000) investigated the distribution of
such dips with orbital phase with the help of the RXTE All Sky Monitor, leading to apparently
two peaks: one at orbital phase φ ∼ 0.95 and one at φ ∼ 0.6 (see Fig. 2.7). The latter one was
attributed to an accretion stream from the companion. These authors also explained the
different spectra of dips by partial covering of the source and made some connection to the
stellar wind in the system.
Poutanen et al. (2008) repeated this study also using data taken after 2000. These authors did
not find an indication for a peak at φ ∼ 0.6 which then was claimed to be due to statistical
fluctuations. They also studied the dependence of dip occurrence on the superorbital phase
which allowed them to develop a model for the geometry of the system.
Feng & Cui (2002) used a full orbit observation of Cyg X-1 with RXTE in January 2000 to
search for dips. Unlike the works presented so far they did not use spectral information
(in detail the hardness ratio; see section 3.1 for a definition) to identify dips. Their criterion
based only on the decrease in count rate. This results in a classification of dips. "Type A"
dips, according to their nomenclature, show the same characteristics as presented so far.
The spectrum hardens during the decrease in the count rate. In accordance with earlier
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Figure 2.6: Chandra spectra without (upper curve) and during the dip (lower curve) (M. Hanke, priv. comm.)
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relations in each of the bands, not having an instrument response

for the ASM, we have used ASM data from the Crab nebula. The

X-ray flux of the Crab in each of the standard bands was

calculated and compared with the mean value of count rate in each

band integrated over a long period. This gives calibration factors

of ,3 � 10210 erg cm22 s21 per count s21 for each of the three

energy bands. This calibration makes the assumption that the

spectral shape of the source does not differ markedly from that of

the Crab nebula over the energy range of the ASM.

Next, we simulated dipping in Cygnus X-1 for a wide range of

spectral parameter values as follows. Spectral fitting of the source

in the low state showed that the contribution of the blackbody soft

excess emission from the accretion disc is small, and so the source

may be modelled with a power-law spectrum that is partially

covered during dipping (BaøucinÂska-Church et al. 1997). Good fits

were obtained using neutral absorber with solar abundances

(cross-sections of Morrison & McCammon 1983). Dip spectra are

normally made by intensity selection to accumulate sufficient

counts, and so include dip data owing to a succession of short dips,

plus non-dip data between the dips, and this accounts for the

partial covering required in fitting. The parameters f, the partial

covering fraction and the column density NH can cover wide

ranges of values and, in simulations, we spanned the whole range

of this two-dimensional space in a set of calculations making

small steps in the parameter values, calculating the flux in each of

the ASM bands, and plotting the results on a colour±colour

diagram of HR2 versus HR1. These simulated data show all the

features of the actual colour±colour diagram of Cygnus X-1 data

obtained from the ASM (Fig. 4), and allow us to interpret the real

data in different positions on the plot.

First, the limited number of real dip points moving horizontally

in HR1 with little increase in HR2 correspond to dipping with

partial covering fraction f � 1:0, i.e. simple absorption in which

the source region is completely covered by absorber. Along this

horizontal line, NH increases from low values to a maximum of

,25 � 1022 Hatom cm22. Other positions on the colour±colour

diagram have f , 1. For a given f value, increasing NH traces a

loop on the plot with column density increasing in an antic-

lockwise sense. For very high NH, the count rate in the highest

energy band begins to be affected, and points move on a vertical

line at small HR1, so that as NH continues to increase, the data

points move vertically downwards.

Based on the above understanding of the spectral changes

taking place in the source revealed in Fig. 4, we selected dip data

by taking points with a value of HR1 . 2 and HR2 . 2:5. The
plots of HR1 and HR2 against time were very flat (Fig. 2)

allowing this selection method to be used. Kitamoto et al. (1990)

found evidence for a variation of the non-dip column density with

orbital phase from ,6 � 1021 Hatom cm22 to ,2 � 1021 H

atom cm22, which they associated with varying NH in the stellar

wind. Our simulations show that such increases in NH will be

excluded from the selection of dip data.

For each point selected from the total data set in Fig. 4 as dip

data, the orbital phase was calculated using the new ephemeris

(LaSala et al. 1998) and the distribution is shown in Fig. 5. The

data are not normalized by the time spent at each phase as the

observation of orbital phases was almost uniform. In principle, it

might be possible to derive NH values for each data point using our

simulations; however, this is made difficult by the fact that any

point on the colour±colour diagram has particular NH and f values,

and adjacent points can have very different NH. Although we

cannot produce a plot of NH versus phase, by plotting HR1 against

q 2000 RAS, MNRAS 311, 861±868

Figure 3. ASM data on Cygnus X-1 sorted into 20 phase bins by folding

on the orbital period: total count rate (lower panel) and hardness ratios

HR1 and HR2.

Figure 4. Colour±colour diagram of ASM data including non-dip and dip

points. Superimposed are simulation results based on typical spectral

parameters and a partial covering model for dipping. The dashed lines

show tracks at constant covering fraction f with NH increasing antic-

lockwise.

Figure 5. Distribution of X-ray dips with phase from the ASM.

1
Figure 2.7: Distribution of dips over the orbital phase (Bałucińska-Church et al., 2000, Fig. 5)
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observations, these dips occur more commonly around orbital phase φ = 0, as far as their
limited statistics of 33 dips allows to infer. They also report of a new class of dips, to which
they refer as "type B" dips. These show no spectral hardening and thus could not be due
to photoelectric absorption. Four of their dips showed this behavior and their occurrence
seemed uncorrelated to the orbital phase. They discuss the origin of these dips giving among
others the following two possible explanations: On the one hand these dips could be due to
partial covering of an extended source by a totally opaque medium, which they attribute to
an accretion stream; on the other hand the existence of type B dips could be due to Thompson
scattering of fully ionized clumps which are very close to the source.
Boroson & Vrtilek (2010) used RXTE ASM data to study Cyg X-1 in the soft state. They
find that type A dips, which they call color dips, in the soft state depend in the same way
on the orbital phase as observed beforehand. They also claim that type B dips, which they
call count dips, show no dependence on orbital phase in the soft state whereas they find a
dependence in the hard state.
In this work only absorption dips are discussed such that, from now on, "dip" always means
"type A dip". The dependence of those dips on the orbital phase with the maximum at
superior conjunction of the black hole is strong evidence for the hypothesis that dipping is
connected to the wind of the companion. There are several models which try to explain
the origin of the absorption dips (see, for example, Poutanen et al., 2008; Bałucińska-Church
et al., 2000). A possible explanation are structures in the wind of HDE 226868. There are
simulations which show clumps in the stellar wind of heavy stars (see section 2.2). In the
focused stellar wind more of these clumps would be in front of the source during superior
conjunction of the black hole, which can be seen in Fig 2.4. There the line of sight dependent
on the orbital phase is ploted in the density profile of the stellar wind. The absorption dips in
Cyg X-1 may finally allow to test such models by investigating the distribution with respect
to orbital phase and the length of the dips.



Chapter 3

Analysis

3.1 Data

The data used for this work are from observations of Cyg X-1 with the PCA of the Rossi X-ray
Timing Explorer (see section 2.1) performed between 1996 October 23 and 2010 January 14
within our monitoring campaign (Pottschmidt et al., 2003; Gleissner et al., 2004b,a; Wilms
et al., 2006). Light curves were extracted at a time resolution of 0.125 s. Fig. 3.1 shows the
observation time per month for the whole time span. The data were split at gaps longer than
10min into a total number of 1531 intervals. As RXTE is in an orbit around Earth with a
period of 90min, most datasets therefore have an duration of approximately 50min due to
Earth occultations. The used channels can be seen in Table 3.1. The energy spans are not
accurate since they changed during so called calibration epochs (see Jahoda et al., 2006).
For the characterization of the dips a hardness ratio was used, which is calculated as
(rate 5+rate 6+rate 7+rate 8)/(rate 1+rate 2) corresponding to (8.2−14.8keV)/(2−5.7keV) and
from now on denoted as the hardness ratio. The energy bands were chosen such that they
have approximately the same count rates and thus statistical quality in the hard state.

Table 3.1: Used PCA-channels and corresponding energy in PCA calibration epoch 5 1

energy band 1 2 3 4 5 6 7 8

PCA channels 0-10 11-13 14-16 17-19 20-22 23-26 27-30 31-35
max energy in keV 4.5 5.7 7.0 8.2 9.5 11.1 12.8 14.8

3.2 Distinction between hard and soft state

As Cyg X-1 has different states (see section 2.3) it was important to categorize the data accord-
ing to their state. To distinguish between hard and soft state a hardness-intensity-diagram
was obtained. Therefore for each dataset a mean value of the hardness ratio is plotted
against the mean value of the softest energy band. In Fig. 3.2 one can distinguish between
the hard/low luminosity and the soft/high luminosity states. For the sake of simplicity the
data were attributed to the soft state if the hardness ratio was smaller than 0.3. The blue
parts in Fig. 3.1 show which parts of the observation satisfy this condition.

1see http://heasarc.gsfc.nasa.gov/docs/xte/e-c_table.html

12
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Figure 3.1: Monthly exposure. The blue parts correspond to the observations classified to be during a soft
state. The red line shows the beginning of the PCA calibration epoch 5.
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3.3 Dip characterization

Because of the intrinsic variability of the source it is not easy to characterize dips in the light
curves. To find absorption dips it is convenient to characterize dips according to an increase
in the sources hardness. In previous works mostly a fixed limit for the hardness ratio was
used (Bałucińska-Church et al., 2000; Poutanen et al., 2008).
Due to the intrinsic variability of the source, it seems to be more convincing to set a local
criterion. Therefore the mean values µ and standard deviation σ of the hardness ratio where
calculated for each data set, i.e., for each continous 50 min light curve segment.
A time span is characterized as a dipping event if its hardness ratio lies 2σ over the mean
value. To smooth out local fluctuations and so characterize the length of dips in a better
way, a moving average over 7 data points (0,875s) was used instead of the hardness ratio
itself. This seemed to give a more natural distinction of long dips which otherwise were
sometimes split into several shorter ones. As this method still tends to characterize short,
local fluctuations as dips, only structures with durations longer than 1s where counted as
dips.

3.3.1 Hard state events

Fig. 3.3 shows a typical dip in the hard state. The characteristics of an absorption dip are
clearly visible: The count rate in the soft energy band decreases suddenly whereas the hard
one stays almost constant. The plot also shows the criterion which is used to identify the
dips (i.e., [moving mean(HR)−µ]/σ) and the hardness ratio itself.
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Figure 3.3: Typical dipping event in the hard state. Count rate in soft (2–4 keV) and hard (13–15 keV) band
(top), criterion for dip selection (middle) and hardness ratio (bottom).
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3.3.2 Soft state events

In the soft state the case is not as clear. Events that are characterized as dips by the criterion
could be generally sorted in three types:

• Type A which show increase in the soft and in the hard count rate

• Type B which show an increase in the hard count rate and a decrease in the soft one

• Type C which are neither type A nor type B

Type A events (for an example see Fig. 3.4) do not show the characteristics of absorption
dips. The increase in the hardness ratio shows a longer timescale trend. Moreover the count
rate in both energy band is not decreasing but increasing. Almost all "dipping" events in
the soft state show this correlation between count rate and hardness ratio which is typical
for soft state variability. This behavior is also visible in the hardness-intensity-diagram (see
Fig. 3.2).

50
0

10
00

15
00

P
C

A
 r

at
e 

[c
ou

nt
s/

s]

2−4 keV

0
50

10
0

15
0

20
0

P
C

A
 r

at
e 

[c
ou

nt
s/

s]

13−15 keV

−50 0 50

1.
95

2
2.

05
(H

R
−

m
ea

n)
/s

ig
m

a

time [s]

Figure 3.4: Typical type A event in the soft state. Count rate in soft (2–4 keV, top) and hard (13–15 keV,
middle) energy band and criterion for dip selection (bottom).
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Type B events (for an example see Fig. 3.5) have a decreasing count rate in the soft energy
band, whereas the hard rate is increasing. This could be attributed to an overflow in the
detector electronics (see, e.g., Gleissner et al., 2004b). During all of these events the soft count
rate reaches the boundary luminosity and decreases subsequently. This behavior is due to
the read out mechanism. If high time resolution is used, there are only a few bits of data
for the count rate for each time bin. If the maximum value is reached the next one is again
zero. Because of averaging over more time bins (considering a larger time resolution than
the intrinsic one of this PCA mode) this overflow results in the observed behavior and not in
a sudden reduction to zero in the count rate. Because of the spectral shape in the soft state
it is most probable that the soft luminosity is not decreasing but increasing. This shows that
Type B events may have the same physical origin as Type A ones.
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Figure 3.5: Typical type B event in the soft state. Count rate in soft (2–4 keV, top) and hard (13–15 keV,
middle) energy band and criterion for dip selection (bottom).
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Type C events (for an example see Fig. 3.6), which are characterized as not being type A/B,
are more seldom but possibly show absorption dip behavior. Nevertheless the classification
of type C events as absorption dips is not as clear as for the hard state because of the higher
variability of the source in the soft state.
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Figure 3.6: Typical type C event in the soft state. Count rate in soft (2–4 keV, top) and hard (13–15 keV,
middle) energy band and criterion for dip selection (bottom).

To differentiate the different dips in the soft state a second criterion is set for type C events.
Since type A/B share an increase in the count rate in the hard band, type C events are classified
as those whose average count rate in the hard energy band during a dip is smaller than the
local average.
The existence of type A and type B events as well as the diversity of type C events show that
the criterion is not able to identify only absorption dips in the soft state.



Chapter 4

Results

4.1 Dip distribution

Using the criterion described in section 3.3, 3154 dips were found in the whole data set. Only
857 of them were in the hard state. This is contradictory to the results of Poutanen et al.
(2008) who found a larger number of dips in the hard state but can be understood because
of their fixed threshold in the hardness ratio for dip characterization.
To gain a distribution of the dips with respect to orbital phase the orbital period was divided
into 20 bins. To avoid selection effects the number of dips in each phase bin was normalized
with the exposure in the phase bin.
Figure 4.1 shows the result for the hard state dips. There is a clear maximum at orbital phase
φ ∼ 1.0 which is consistent with the earlier observations of Bałucińska-Church et al. (2000)
and Poutanen et al. (2008). The difference is that around orbital phase φ ∼ 0.5 no dips are
found at all, while the earlier investigations always seemed to find a background or even the
secondary peak at φ ∼ 0.6. The reason for this difference lies in the new criterion which in
contrast to the earlier ones takes local long time fluctuations into account.
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Figure 4.1: Distribution of the hard state dips over the orbit
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Figure 4.2 shows the orbital distribution of events found by the criterion in the soft state.
The events are also classified with the type-scheme of section 3.3.2. It is clearly visible that
the orbital dependence of type A/B events differentiates strongly from the distribution of
dips in the hard state. Type C events, of which only 37 were found, show a stronger orbital
dependence. Figure 4.3 shows how the hard state dips are distributed with respect to orbital
phase and time. Gaps are due to soft states which could be seen in the RXTE ASM light
curve in the bottom plot.
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4.2 Testing the criterion on simulated light curves

4.2.1 The Timmer & Koenig (1995) algorithm

The light curves used in this section were simulated using a technique of Timmer & Koenig
(1995). With the help of their algorithm it is possible to simulate normal distributed light
curves of length T with a time resolution of t for a given power spectral density (PSD) g( f ).
The algorithm works the following way:

1. choose the desired PSD g( f )

2. calculate the Fourier frequencies fi ∈
{

1
T ,

2
T , . . . ,

1
2t

}
3. for each fi draw two Gaussian distributed random numbers y1, y2 and calculate the

real and imaginary part for the Fourier transform h( fi) =
(
y1 + iy2

) √
1
2 g( fi)

4. set the values for negative frequencies by h(− fi) = h∗( fi)

5. perform a backward Fourier transformation of h( f ) to obtain the light curve

After calculating the mean value ν and the standard deviation ρ of the light curve L gained in
this way, it can be renormalized to the desired values µ and σ via the following calculation:

Lnew = µ+
L−ν
ρ
σ

An example for a part of a simulated light curve is shown in Fig. 4.4. Fig. 4.5 shows the
corresponding PSD (the one used in section 4.2.3 for the hard state simulation), which was
gained out of the light curve, compared to the PSD used for the simulation.
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Figure 4.4: Part of a light curve simulated with the algorithm described above
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Figure 4.5: PSD of a simulated light curve (red) obtained by the algorithm out of the given PSD h( f ) (black)
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4.2.2 Correlated light curves with time lags

Since the different energy bands in Cygnus X-1 are correlated with each other with a time
lag ∆τ( f ) (see section 2.3) it is necessary to simulate the hard and soft energy band with this
dependency. Assuming a coherence of 1 the Fourier components of the one energy band are
fully determined by those of the other and the time lag spectrum. It is possible to adapt the
algorithm described in section 4.2.1 to simulate two light curves in such a way.
Two light curves with a time lag of ∆τ( f ) can be simulated if after point 3 in the algorithm a
second set of Fourier components is multiplied by the phase shift in the following way

s( f ) = h( f ) ·exp(2πi · f ·∆τ)

and then s( f ) is treated in the same way as h( f ). Figure 4.6 shows the results of using this
method for a constant time lag of ∆τ( f ) = 1s.
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Figure 4.6: Two light curves simulated with a constant time lag of ∆τ( f ) = 1s

Nowak et al. (1999) report that the measured time lags have uncertainties which are connected
to Poisson noise of the detector. Therefore the each value of the light curves which were
simulated in the way described above is subsequently replaced by a random number drawn
out of Poisson distribution with the mean of the value. If the light curves beforehand
are distributed according to the distribution Pσ,µ with the mean value µ and the standard
deviation σ the new light curves are distributed according to

P̃σ̃,µ̃(n) =

∫
∞

0
dr Pσ,µ(r) ·Pλ=r(n),

where Pλ is the Poisson distribution with mean value λ. Fig. 4.7 shows P̃σ̃,µ̃(n) for the
Gaussian distribution Pσ=10,µ=50(n) as well as Pσ=10,µ=50(n) itself.
The mean value of the new distribution can be derived using Fubini’s Theorem

µ̃ =

∫
∞

0
dn P̃σ̃,µ̃(n) ·n =

∫
∞

0
dr Pσ,µ(r)

∫
∞

0
dn Pr(n) ·n =

∫
∞

0
dr Pσ,µ(r) · r = µ
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Figure 4.7: The Gaussian distribution Pσ=10,µ=50(n) (dotted) and the resulting P̃σ̃,µ̃(n) (solid)

In the same way σ̃ is gained using µ̃ = µ and that the standard deviation of the Poisson
distribution is

√
λ.

σ̃2 =

∫
∞

0
dn P̃σ̃,µ̃(n) · (n− µ̃)2 =

∫
∞

0
dr Pσ,µ(r)

∫
∞

0
dn Pλ=r(n) · (n−µ)2

=

∫
∞

0
dr Pσ,µ(r)

[∫
∞

0
dn Pr(n) · (n− r)2

−2(µ− r)
∫
∞

0
dn Pr(n) ·n + (µ2

− r2)
∫
∞

0
dn Pr(n)

]
=

∫
∞

0
dr Pσ,µ(r)

[
r−2(µ− r) · r + (µ2

− r2)
]

=

∫
∞

0
dr Pσ,µ(r)

[
(r−µ)2 + r

]
σ̃2 = σ2 +µ

With the help of these relations it is possible to simulate light curves with desired mean µ̃
and standard deviation σ̃ by setting the values to µ = µ̃ and σ =

√
σ̃2− µ̃ in the way described

in section 4.2.1 before applying the Poisson noise.
It is common that light curves are given in units of counts per second. Nevertheless the
Poisson statistics should be applied to the measured number of counts in each time bin. This
value is obtained by multiplying with the time resolution before applying the Poisson noise.
By dividing it by the time resolution afterwards the result has units of counts per second and
the right Poisson statistics. If the count rate should be normalized to the number of PCUs
used, the same should be done with the number of PCUs. This is, for example, necessary if
the mean and standard deviation are calculated out of rate per PCU data.
It is possible to simulate two light curves which follow a given PSD with a given time
lag and Poisson noise in the way described above. Figure 4.8 shows the result of such a
simulation for frequency dependent time lag of ∆τ( f ) = 0.01s · ( f/Hz)−0.7 which was used
for the simulations in section 4.2.3. Timing analysis shows that such simulated light curves
have the desired time lag spectrum (see Fig. 4.9).
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Figure 4.8: Two light curves simulated with a frequency dependent time lag of ∆τ( f ) = 0.01s · ( f/Hz)−0.7

and Poisson noise
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Figure 4.9: Time lag spectrum gained via timing analysis out of the simulated light curves (black) and time
lag used for the simulation (red) (V. Grindberg, priv. comm.)
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4.2.3 Test of the criterion

To check whether the chosen criterion is sensitive only on dipping and not also on intrinsic
source variability it is tested on simulated light curves. Therefore the methods described in
section 4.2.1 and 4.2.2 were used to simulate light curves with a given power spectral density.
For the hard state the double Lorentzian profile

PSDh( f ) =
2σ2

1 ·Q1 · f1
π
2 + arctan(2Q1)

·
1

f 2
1 + Q2

1 · ( f − f1)2
+

2σ2
2 ·Q2 · f2

π
2 + arctan(2Q2)

·
1

f 2
2 + Q2

2 · ( f − f2)2

was used as power spectral density (PSD), whereas the PSD for the soft state was chosen the
a cut-off power law with Lorentz

PSDs( f ) = N · f βe− f/c +
2σ2

3 ·Q3 · f3
π
2 + arctan(2Q3)

·
1

f 2
3 + Q2

3 · ( f − f3)2
.

The parameters were obtained by a fit to typical PSDs (M. Böck, priv. comm.), see Table 4.1.
Both PSDs are plotted in Fig. 4.10

Table 4.1: PSD parameters used for the simulation of light curves

parameter σ1 f1 [Hz] Q1 σ2 f2 [Hz] Q2

value 0.0408405 0.588488 0.3437823 0.03840426 4.382007 0.3950863

parameter N β c [Hz] σ3 f3 [Hz] Q3

value 0.001083116 1 30 0.02537187 3.245546 0.3860634
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Figure 4.10: PSDs used for the simulations in the hard state (red) and in the soft state (black)

For each observation orbit a light curve is simulated for the hard and soft energy band with
the corresponding mean and standard deviation and the respective PSD. The length of each
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of these light curves is chosen as 215 s ≈ 9h such that it is at least 10 times longer than the real
observations.
An important fact is that the light curves for the hard and soft energy band are correlated
(see section 2.3). Assuming a coherence of 1 and that the errors in the time lag are only
due to noise in the detector the algorithm of Timmer & Koenig (1995) could be adapted to
simulate light curves for the soft and hard energy band with a given time lag (see section
4.2.2). Since the coherence is not 1 in transitional states and there is no information about
the soft state, such a simulation should be seen as a boundary case of fully correlated energy
bands. Simulations with two fully uncorrelated energy bands are the other boundary case.
For uncorrelated light curves in the hard state simulation 185 dips were found by the criterion.
Taking into account that the simulated light curves are longer this results in a total number
of approximately 11.4 simulated dips for the real hard state observation times. In the soft
state 24242 dips were found resulting in a total of 1494.7 dips for the soft state observation
time.
Using a frequency dependent time lag of ∆τ( f ) = 0.01s · ( f/Hz)−0.7 (which was estimated out
of Nowak et al., 1999) no dips were found in the hard state. In the soft state 13231 dips
were found and this results in 808.6 for the soft state observation time. This shows that
the correlation make false-dips more unlikely to happen, because local fluctuations in the
hardness are less probable with correlated light curves.
Both cases show that in the hard state the criterion could be trusted to find absorption dips
while in the soft state this is probably not the case. Therefore only hard state dipping events
are discussed in this work from now on.

4.3 Stability of the dip Distribution

To test the statistical stability of the dip distribution, several subsets of the data were taken
and compared. Fig. 4.11 shows the distribution subsets of even and odd observation num-
bers, while Fig. 4.12 shows the first and second half of the whole campaign.
To check stability a two sample Kolmogorov-Smirnov test was performed (see appendix A).
The null hypothesis is that the cumulative distribution functions F1 and F2 two empiric sam-
ples consisting of n1 and n2 observations are distributed according to the same distribution.
It is rejected at level α if D >Dn1,n2,α is valid for the test statistic

D = max {|F1(x)−F2(x)|} .

With n1 = n2 = 428 and for α = 0.01 we obtain D428,428,0.01 = 0.111.
For the first division where every second observation was separated, D was obtained as
D = 0.002 such that at the 1% level the null hypothesis is not rejected. This shows the statis-
tical stability of the data.
In contrast to that, the second subsets where the data were split temporally, have D = 0.228.
This value is greater than the limit D428,428,0.01 = 0.111 such that the null hypothesis is rejected
at the 1% level. This leads to the conclusion that the dip distribution evolves with time as
the first and the second time span of the observation are most probably not from the same
distribution.
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Figure 4.11: Subsets of the dip distribution using every other dataset
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Figure 4.12: Subsets of the dip distribution using the first and second half of the campaign
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4.4 Temporal evolution

4.4.1 Measured time evolution

The evolution of the dip distribution in time was examined further by dividing the obser-
vations into smaller bits. This is only possible to certain minimal size for a subset because
the statistic is affected if the number of observations in one of the phase bins reaches zero.
Choosing a time interval of two years this happens only twice in bins where no dip are found
in the whole time span. To see a temporal trend it is important that the subsets are connected.
Because of the long soft state in 2002 there would be a disconnection such that all data before
are excluded in this section. The time evolution of the center of the dip distribution of the
remaining data is shown in Fig. 4.13. For every time the average of the dip distribution of a
timespan beginning one year in the future and ending one year in the past is plotted. The
center of the dip distribution is clearly shifting in time. This could be due to real temporal
evolution or statistical effects. It is unlikely that this is due to faults in the ephemeris because
this would only result in shifting into one direction.
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Figure 4.13: Temporal evolution of the center of a two years interval of the dip distribution

4.4.2 Simulated time evolution

To check whether the observed time evolution of the dip distribution is due to selection or
statistical effects a Monte Carlo simulation is performed. The null hypothesis is that the
measured time evolution of the center of the dip distribution as a function of orbital phase is
due to a stable triangular one. To test this, dips distributed according to such a distribution
are simulated in the following way.
First a triangular distribution is gained by inverse transform sampling (see appendix B). Its
parameters are chosen such that the distribution has the maximum at orbital phase 1 and is
non-zero from 0.7 to 1.3.
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To determine dip occurrence times for the whole time span of the campaign, it is divided into
bins of the length of the orbital period. Now a random of these bins is chosen according to
a uniform distribution. In this orbital phase bin the dip phase is chosen with the help of the
triangular distribution. In this way dips are simulated, which are distributed in a triangular
shape with respect to the orbital phase.
The measured density of dips is 27.92 dips per day. For a time span from October 1996 till
January 2010 this results in a total number of 135103 dips. For one simulation this number of
dip occurring times were simulated in the way described beforehand. After that they were
filtered with the real observation times to see if there are any selection effects. Hereon the
time evolution of the center of the distribution was calculated like for the measured data (see
section 4.4.1).
This procedure was repeated 10000 times to calculate a density distribution. The outer black
lines in Fig. 4.14 correspond to the maximum and minimum value of the orbital phase of
the dip distribution center, whereas 50 % of the simulated time evolutions lie between the
inner black lines. The red points correspond to the measured time evolution. It is clearly
visible that the measured time evolution differs significantly from the 10000 simulated ones.
This leads to the conclusion that the dips are not distributed according to a stable triangular
distribution. This is an indication for temporal development in the dip occurrence.
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Figure 4.14: Density profile of the 10000 simulated time evolutions (black): the outer lines show the maximum
and minimum value whereas the inner ones contain 50 % of the data. Measured time evolution (red).
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4.5 Length distribution

Figure. 4.15 shows the dip length distribution. For each dip length the number of dips
shorter than this length is plotted. Most dips are at the lower boundary of the criterion with
a length of 1s while the longest dip has a duration of 117s. It is possible that some of the short
time events are due to source variability, but it is difficult to distinguish between absorption
dipping and source variability at short time scales. Therefore dipping events shorter than 1s
are excluded from the beginning (see section 3.3). There might be a overestimation of short
dips but an objective, formal criterion which is transparent was preferred over the subjective
exclusion of dips. However the long timescale events could be clearly identified as dipping
events.
It is obvious that longer dips are far more rare than short ones. Looking at some of the longer
dips one gets the impression that they have substructures and that there is a possibility that
they consist of several shorter dips.
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Figure 4.15: Length distribution. Number of dips shorter than respective length.

To investigate whether long dips consist of shorter ones, the median of the dip length per
phase bin was computed. It was tested if there is a correlation between dip length and the
occurrence of dips. Such a correlation would strengthen the hypothesis because if there a
more dips it should be more probable that they overlap and so build a longer dip. Figure. 4.16
shows the comparison between median dip length in the upper panel and dip occurrence in
the lower panel. It is clearly visible that the median dip length shows no dependance on the
orbital phase whereas the occurrence does. So there is no correlation between the dip length
and the occurrence within statistical accuracy.
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Figure 4.16: Median dip length and dip occurrence per phase bin



Chapter 5

Summary and outlook

The aim of this work was to study absorption dips in RXTE data from Cyg X-1. First a
criterion was found based on the deviation of the hardness ratio from the local mean. This
criterion turned out to work in the hard state of the source while not only indicating dips
during the soft state but also flares and local fluctuations. This observation was tested by
using the criterion on simulated light curves which showed that in the hard state only few
events are detected because of intrinsic variability while in the soft state this could not be
excluded. Therefore only hard state dips were used for further studies.
A distribution of dips in hard state over the orbit was gained. It showed that dips only occur
near superior conjunction of the black hole. This is in contrast to the orbital distribution
seen in earlier works, where a fixed value for the hardness ratio was used as a criterion
and dips were found at all orbital phases. While the distribution seems to be statistically
stable it seems to evolve in time. This was emphasized by a Kolmogorov-Smirnov test. This
time evolution in the dip distribution was studied further by showing with the help of a
Monte Carlo simulation that the dip distribution is most probable not a stable triangular
distribution.
Studying the length distribution of dips showed that longer dips which have duration up
to 100s are less frequent than shorter ones. There is a possibility that long dips consist of
a series of short dips. But there is no evidence for that because no correlation between dip
length and occurrence of dips could be found.
To obtain a better understanding of dipping, a criterion which is able to find dips in the soft
state in a better way would be helpful. Furthermore the time evolution of the dip distribution
should be investigated further as this could yield information about what causes dipping.
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Appendix A

Two sample Kolmogorov-Smirnov test

To check the stability of the distribution in section 4.3 a two sample Kolmogorov-Smirnov
test was performed. With this test the compatibility of two subsets could be checked without
knowing the underlying distribution. The null hypothesis is that the cumulative distribu-
tion functions F1 and F2 of two empiric samples consisting of n1 and n2 observations are
distributed according to the same distribution. The test statistic is:

D = max {|F1(x)−F2(x)|}

For a discrete sample X = {x1,x2, . . . ,xn} it is convenient to use the step function

F(x) =
1
n

∣∣∣{y ∈ X : y ≤ x
}∣∣∣ ,

where |Z| indicates the number of elements of the set Z, as the cumulative distribution
function. The test statistics is gained by calculating the difference of these functions for the
two samples D at every discrete point x ∈ X1 ∪X2 and calculating the maximum of these
values.
The null hypothesis is rejected at level α if D >Dn1,n2,α (see, for example, Sachs, 2006). For n1
and n2 large enough Dn1,n2,α can be estimated according to:

Dn1,n2,α =

√
ln


√

2
α

 · √n1 + n2

n1n2

With the values used in section 4.3, n1 = n2 = 428, and for α = 0.01 we obtain D428,428,0.01 =
0.111.
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Appendix B

Inverse transform sampling

To obtain the triangular distribution which is used in section 4.4.2 inverse transfer sampling
was used. This is a method with which a sample distributed according to a given probability
distribution fX(x) is generated out of a unitary distributed random number u ∈ [0,1].
The normalized triangular distribution over the periodical phase x ∈ [0,1] with a width of
0.6 and the maximum around 0 respectively 1 is

fX(x) =


1

0.3 −
1

(0.3)2 x for x < 0.3
0 for 0.3 ≤ x ≤ 0.7

1
(0.3)2 (x−0.7) for 0.7 < x

,

which is plotted in Fig. B.1 on the left side. On the right the cumulative distribution function
FX(x) is shown which is calculated as

FX(x) =

∫ x

0
fX(y)dy =


x

0.3 −
x2

2·(0.3)2 for x < 0.3
1
2 for 0.3 ≤ x ≤ 0.7

1
2 + 1

2

(
0.7
0.3

)2
+ x2

2·(0.3)2 −
0.7x

(0.3)2 for 0.7 < x

From which we get the inverse cumulative distribution function

F−1
X (u) =

{
0.3−

√
(0.3)2−2u(0.3)2 for u < 0.5

0.7 +
√
−(1−2u)(0.3)2 for u > 0.5

visible in Fig. B.2. If now u is chosen as uniformly distributed random variable, X = F−1
X (u) is

distributed according to fX. A histogram of an example where 5000 numbers were generated
in this way is plotted in Fig. B.2 on the right side.
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